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ABSTRACT

Jones, Aaron M., Ph.D. Engineering, Engineering Ph.D. Program, Department of Electri-
cal Engineering, Wright State University, 2016. Performance Prediction of Constrained
Waveform Design for Adaptive Radar.

Today’s radars face an ever increasingly complex operational environment, intensified

by the numerous types of mission/modes, number and type of targets, non-homogeneous

clutter and active interferers in the scene. Thus, the ability to adapt ones transmit wave-

form, to optimally suit the needs for a particular radar tasking and environment, becomes

mandatory. This requirement brings with it a host of challenges to implement including

the basic decision of what to transmit. In this dissertation, we discuss six original contribu-

tions, including the development of performance prediction models for constrained radar

waveforms, that aid in the decision making process of an adaptive radar in selecting what

to transmit.

It is critical that the algorithms and performance prediction models developed be robust

to varying radio frequency interference (RFI) environments. However, the current literature

only provides toy examples not suitable in representing real-world interference. Therefore,

we develop and validate two new power spectral density (PSD) models for interference

and noise, derived from measured data, which allow us to ascertain the effectiveness of an

algorithm under varying conditions.

We then investigate the signal-to-interference-and-noise ratio (SINR) performance for

a multi-constrained waveform design in the presence of colored interference. We set-up

and numerically solve two optimization problems that maximize the SINR while applying

a novel waveform design technique that requires the signal be an ordered subset of eigen-

vectors of the interference and noise covariance matrix. The significance of this work is the

observation of the non-linearity in the SINR performance as a function of the constraints.

This inspires the development of performance prediction models to obtain a greater under-

standing of the impact practical constraints have on the SINR.

iii
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Building upon these results, we derive two new performance models, one for the con-

strained waveform SINR and one for the basis-dimension of the eigenvectors of the noise

and interference covariance matrix required to achieve a particular modulus constraint.

Radar waveforms typically require a constant modulus (constant amplitude) transmit sig-

nal to efficiently exploit the available transmit power. However, recent hardware advances

and the capability for arbitrary (phase and amplitude) designed waveforms have forced a

re-examination of this assumption to quantify the impact of modulus perturbation from

phase only signals. The models are validated with measured data and through Monte Carlo

(MC) simulation trials.

Lastly, we develop the role of the integrated sidelobe (ISL) parameter for adaptive radar

waveform design as it pertains to SINR performance. We seek to further extend the state-

of-the-art by developing two new performance models for the integrated sidelobe metric.

First, the corresponding SINR degradation, from optimal as the ISL constraint is applied

and second, the basis dimension of the noise and interference covariance matrix required to

generate the waveform. With our approach, we are able show exceptional ability to predict

the impact to SINR as we tighten the ISL constraint in the waveform design. For all perfor-

mance models, we include Monte Carlo simulation trials designed to measure the impact

of ISL on SINR as well as compare performance when measured data is used to represent

the interference and noise covariance matrix.
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Abbreviations and Symbols
Throughout this dissertation numerous abbreviations and symbols are used. While the def-
initions can be found in surrounding text, this section provides a quick reference.

ACF Autocorrelation Function
ACS Autocorrelation Sequence
AF Ambiguity Function
AFRL Air Force Research Laboratory
AR Auto-regressive
BAA Broad Agency Announcement
CDF Cumulative Distribution Function
CM Cumulative Modulus
DARPA Defense Advanced Research Projects Agency
DAWG Digital Arbitrary Waveform Generator
DFT Discret Fourier Transform
DOF Degree of Freedom
DSP Digital Signal Processing
ET Envelop Tracking
FAR Fully Adaptive Radar
FFT Fast Fourier Transform
FM Frequency Modulation
GHz Gigahertz
Hz Hertz
I + N Interference and Noise
ISL Integrated Sidelobe
ISLR Integrated Sidelobe Ratio
KL Kullback-Leibler
LFM Linear Frequency Modulation
MATLAB Matrix Laboratory
MC Monte Carlo
MDL Minimum Description Length
ML Maximum Likelihood
MLE Maximum Likelihood Estimates
MHz Megahertz
MP Marčenko-Pastur
MPC Micro Power Conversion
MPSL Minimum Peak Sidelobe Sequence
OTA Over-the-air
PAPR Peak-to-average-power Ratio
PDF Probability Density Function
PeCAN Periodic Cyclic Algorithm New
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List of Abbreviations (cont.)

PMF Probability Mass Function
PSD Power Spectral Density
PSL Peak Sidelobe
PSLR Peak Sidelobe Ratio
RCS Radar Cross Section
RF Radio Frequency
RFI Radio Frequency Interference
RMB Reed Mallett Brennan
RMT Random Matrix Theory
RX Receive
SINR Signal-to-Interference-and-Noise Ratio
SWORD Signal Waveform’s Optimal Under Restriction Design for Active Sensing
TX Transmit
UHF Ultra High Frequency
WLOG Without Loss of Generality
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List of Symbols and Notation

≈ Denotes an approximate quantity
(·)H Hermitian form of an argument
E{·} Expectation operator
‖ · ‖p p-norm of an argument
∇ Gradient vector
sn The nth entry of a column vector
Re{·} Real component of complex argument
Im{·} Imaginary component of complex argument
H Hermitian matrix
H Hessian operator
(·)∗ Optimal solution
� Hadamard operator
∼ A probability density
vec(X) Vectorize operator
diag Diagonal matrix
d·e Ceiling operator
b·c Floor operator
tr Trace of a matrix
(·)−1 Inverse operator
| · | Absolute value
(̂·) Estimate
s.t. subject to
dim(·) dimension of the argument
∈ denotes membership in a set
R set of real numbers
I set of imaginary numbers
C set of complex numbers
LHS Left hand side of an equation
min minimization√
· square-root of an argument

p
√
· p-th root of an argument
F Fourier Transform∏

Product operation
O(·) Computational complexity
Γ(α) Gamma function evaluated at α
≤ Less than or equal to
& Approximately greater than
(·)T Transpose operator
∼= Asymptotically equivalent∫ b
a

Bounded integral
∂ Partial derivate∏

Product
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List of Symbols and Notation (cont.)⊗
Kronecker

∀ For all
→ Tends to
lim Limit
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and Marčenko-Pastur. AR models have precedent in representing certain

radar data [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Representative PSD for three unique classes of interference. 1. Weakly

correlated AR data model. 2. Highly correlated AR model. 3. Marčenko-
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Chapter 1

Introduction

This chapter includes introductory material that provides context for the research and gives

a brief synopsis of each of the novel contributions described in the dissertation. First, in

section 1.1, we give a broad overview of the intentions for the dissertation. Section 1.2 pro-

vides motivation to pursue this important research area. Section 1.3 describes performance

models and gives an example and use-case for radar. Section 1.4 discusses each of the

novel contributions. Section 1.5 gives the outline of the dissertation. Section 1.6 reviews

the notation used throughout the document. Finally, section 1.7 summarizes the Chapter.

1.1 Overview

In this dissertation, we endeavor to improve answering the basic question of what to trans-

mit for an adaptive radar. We accomplish this objective by advancing our understanding

of how constraints on radar waveforms affect the SINR performance with six novel contri-

butions in the areas of performance prediction models, interference and noise covariance

matrix modeling and new waveform design approaches.

Waveform design and optimization is a highly developed field with applications in

radar, communications, imaging, etc., for both commercial and military communities. This

1
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is, in part, inspired by the fact that the ability of a system to transmit arbitrary waveforms

provides a unique flexibility to improve sensing performance by optimizing the design de-

grees of freedom (DOF) for a specific task [4, 5]. Additionally, a key advantage of an

adaptive waveform design system, versus a waveform static system, is that it theoretically

allows improved operation in dynamically changing environments, such as those that mod-

ern radar systems face.

Waveform diversity has its roots dating back as far as the 1930s, where history re-

calls the development of waveforms with varying chirp rates [6]. In 1953, the definition of

the narrowband radar ambiguity function (AF) was formulated by P. M. Woodward [7, 8].

This instrument has proved to be an important and intricate tool in waveform design, as

noted in [9]. In fact, this dissertation is partially inspired by the famous Woodward quote,

having a ubiquitous feeling for all radar waveform design (and performance prediction)

researchers, that is found at the end of the book [7] and is as follows:

The reader may feel some disappointment, not unshared by the writer, that the

basic question of what to transmit remains substantially unanswered.

This sentiment is further exacerbated today with the increases in the number modes, mis-

sions, and operational environments that current (and future) radar systems face, an exam-

ple of such a system is given in [10].

The advent of the matched filter (or pulse compression) technique allowed longer

pulse lengths and ability to resolve closely spaced targets as a function of the waveform

bandwidth [11, 12]. However, this invention created an additional concern for radar wave-

forms designers, namely, range sidelobe levels and its corollary, how to suppress them. In

this dissertation, we consider a design methodology to observe the signal-to-interference-

and-noise ratio performance as a function of the sidelobe suppression and develop quick-

to-compute performance prediction models to aid in the decision making process of an

adaptive radar. We employ this novel waveform diversity approach to allows intuitive, and

analytical, development of performance prediction models for constrained radar waveform

2
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design.

Significant operational challenges exist for modern radar systems, such as, scene to-

pography, increasing number of targets, decrease in size of targets and the congested/con-

tested spectrum, among others. These concerns lead us, inexorably, to the conclusion that

simply interrogating the scene is no longer sufficient. The radar (and thus the transmit

waveform) must adapt to its environment and, therefore, understanding the impact of prac-

tical constraints is a prerequisite.

1.2 Motivation

Radar waveform design techniques typically focus on maximizing the SINR [13–15] while

satisfying some practical constraint quantified by a suitable measure (e.g., Doppler tol-

erance, peak side-lobe ratio (PSLR) and/or integrated side-lobe ratio (ISLR), bandwidth,

energy, etc.). Success is claimed when the waveform achieves improved SINR, relative to

the current best technique. However, what is ignored, or not fully understood, is the degra-

dation in SINR, from optimal, when the constraint is allowed to be tightened or loosened.

Currently, no performance models exists that discuss relationships between waveform

constraint and SINR performance. This motivates research to focus on developing the re-

lationships (i.e., performance prediction models) between practical constraints for radar

waveforms and the SINR performance that is critical for detection. The lack of under-

standing leads us to develop innovative practical models with an intuitive approach to un-

derstanding the complex relationships of constraints and SINR performance. Specifically,

in this dissertation, we will focus on the waveform modulus and the range sidelobe con-

straints1.

Adaptive systems can use performance prediction models to make informed, respon-

sive decisions on what to transmit based on the needs of the system and the operational

1This work first featured in; A. M. Jones, B. D. Rigling, and M. Rangaswamy, Motivations to develop
performance prediction for adaptive radar, in NAECON. IEEE, June 2015.
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environment. Designing waveforms and enforcing constraints without this understanding

is a shortsighted approach for adaptive radar waveform design due to the nonlinearity of

the SINR performance for practical constraints [16].

We are further motivated by recent advances in hardware capability to generate ar-

bitrary (phase and amplitude) design waveforms. The need to re-examine the usual as-

sumption of phase-only or constant modulus signal design for radar is warranted and can

be attributed to a confluence of recent events. For example, the Defense Advanced Re-

search Projects Agency (DARPA) has made significant progress in the Micro-scale Power

Conversion (MPC) program that desires, among other goals, to advance high efficiency RF

power amplifier technology via envelope tracking (ET) of the transmission, see DARPA

BAA-11-33. They note in [17] that many present and future RF systems employ com-

plex modulation techniques with high peak-to-average-power ratio (PAPR) and the power

amplifiers operate well below peak output a majority of the time, wasting valuable and

limited, energy resources. Begin able to employ ET in a fixed and highly limited power

environment (e.g. airborne platform) could imply additional devices or sensors could run

simultaneously or if battery powered, extended operational time. Also, the community has

witnessed significant advances in digital arbitrary waveform generators, giving rise to the

possibility of a broad range of transmit signal classes [13, 18].

1.2.1 Adaptive Sensing

As a possible concept of operations, we consider the challenging RF sensing paradigm

(see Figure 1.1) where a sensing system must contend with multiple types of topography

(such as urban, rural, suburban and littoral, or combinations within a single sortie), many

different types of targets (ground movers, airborne and space platforms, for example) and

the shrinking RF spectrum (i.e., contested/congested) limiting the available frequencies for

clean transmission. These concerns together necessitate optimal use of available resources

4
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to maximize system performance.

Under these assumptions, it would be advantageous to consider use of a Fully Adap-

Figure 1.1: Challenging RF sensing paradigm.

tive Radar (FAR) or cognitive radar [19, 20] to overcome the limitations of fixed transmis-

sion. However, one of the many implementation challenges of the FAR is estimating how

the waveform will perform as the constraints are changed to suit the mission/mode/envi-

ronmental needs.

A direct application for performance prediction models is the Fully Adaptive Radar

(see Figure 1.2), which we define as:

Definition 1 Fully Adaptive Radar Construct:

A broad system architecture that exerts all available degrees of freedom (DOF) on

transmit and receive to provide closed-loop feedback optimization of system performance

for all possible missions/modes and environmental concerns.

5
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We highlight how performance models can aid in the decision making process of what to

transmit for an adaptive system in the following sections.

Scheduler Resource Allocator 

Transmit Resource Channel Adaptive Receiver 

Controller 

AgileTracker 

Agile Classifier 

Auxiliary Information 

Figure 1.2: Fully Adaptive Radar Construct [1]

1.2.2 Motivations for Performance Models for Radar

Gross Lack of Understanding of How Practical Constraints on the Waveform Effect

Detection Performance

Possibly the most convincing argument to develop performance models is the lack of un-

derstanding in how constraints influence SINR performance. Intuitively, we have an under-

standing that forcing constraints on the waveform design limits the DOF to maximize SINR

performance. However, it seems misguided then, to arbitrarily place a constraint without

fully comprehending the consequence to the detection performance.

Again, adaptive systems can use performance models to make informed, responsive

6
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decisions on what to transmit based on the needs of the system and the operational envi-

ronment. Designing waveforms and forcing constraints without understanding the conse-

quences is a shortsighted approach due to the nonlinearity of the SINR performance.

Adaptive Technologies Require Insight

The use of an adaptive system allows the radar to smartly adjust to a wide variety of non-

stationary environments. However, to truly close-the-loop, the radar must be adaptive on

transmit [19]. This would imply we understand how to change the transmit waveform to be

better suited for the environment under test, to do so; we (the radar waveform designers)

need to provide the direction of adaptation. This could include a multitude of dimensions,

including the sidelobe levels and the modulus. We caution, the absence of performance

models to aid in the decision of what to transmit for FAR limits the responsiveness of the

directivity we can provide to the adaptive system.

Solving High-Dimensional Optimization Problems in Real-Time is Currently a Chal-

lenge

Lastly, we are motivated to develop performance models due to the computational burden

of solving large dimension optimization problems. Compute power is a primary concern in

time/space limited environments (like that of an on-board airborne computer system) and

the adaptive radar is no exception. We note, for example the adaptive matched filter has

O(M3) (where M is dimensionality of the problem), the adaptive tracker given L points of

data and K target models, the computational cost of data association is KL, and additional

cost can come from incorporation of a priori information pertaining to a given scenario

in the form of information storage, communication, retrieval overhead as well as the cost

of cuing databases in real time. Thus, even a simple instantiation of the FAR/cognitive

system becomes computationally intensive. Reducing training data support is imperative

to ameliorate over this important problem.
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For the use-case of adaptive radar we ask, can we limit the search space to identify the

desirable transmit waveform? Thus, providing relief for the curse of dimensionality on the

computing resources. With the development of performance models for waveform design,

we can give the radar a rough estimate of performance and achieve in limiting the search

space.

1.3 Example of a Performance Model

As shown notionally in Figure 1.4, the interference and noise (I + N) characteristics play

an important role in the SINR performance that is further compounded by the constraints

applied to the waveform design. As an example, estimation of the interference and noise

in the radar channel is necessary for adaptive radar to be effective. Detailed in [21], the

Reed-Mallot-Brennan (RMB) rule (i.e. performance model) accurately denotes the num-

ber of training data samples required (≈ 2N, where N is the problem dimensionality) to

get within 3dB of the optimal (clairvoyant) covariance estimation for adaptive receive filter

design. This is an effective performance model for radar that with rigorous mathemati-

cal tractability provided insights into the data needs for covariance estimation to perform

space-time adaptive processing. Although not a guarantee, this model gives the average

training data requirement for a specific case of an I + N environment under certain assump-

tions.

The model significantly reduces the amount of information needed to predict perfor-

mance, in this case you only need to know the dimension of the problem to get an estimate

of the data needs, where, in reality you would need to acquire the actual sample covariance

matrix to compute the true data needs. The model has traded accuracy for speed and, over

time, has proved a useful model. It is our goal to achieve a similar level of utility for the

performance prediction models for constrained radar waveform design.

8
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1.3.1 Typical Waveform Constraints

For practical radar, we are limited by the hardware capabilities as to what is possible to be

transmitted. However, with the advent of digital arbitrary waveform generators (DAWG’s)

and envelope tracking technologies, we are in new territory enabling near absolute flex-

ibility on transmit. Nevertheless, concerns persist. For example, finite energy on-board

an airborne platform, low SINR targets being missed by high range-sidelobes or near-in

targets masked by high PSLR. As an example, in Figure 1.3 we observe the issues when

sidelobe concerns are omitted from the transmit waveform design process. This loosely

illustrates how ignoring the integrated sidelobes can result in target misses at the radar re-

ceiver output.

Similarly, the peak-to-average power ratio of the transmit waveform is of critical
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Figure 1.3: Illustration of the consequences when range sidelobe concerns are omitted (and
considered) in the waveform design process to maximize SINR.

importance for the radar designer. Of course, the maximum supply voltage is finite in

any system and it is understood that more power on target increases the chances that the re-

turn signal is detected, but modulating the amplitude of the waveform will limit the over-all

transmit power. Therefore, efficient use of the available supply voltage on transmit becomes

9
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part of the waveform design criteria. Other constraints exist; however, range-sidelobes and

power usage are the primary concerns for the radar waveform designer.

1.3.2 Use-case for Performance Prediction Models and Adaptive Radar

The use-case for performance models considered in this dissertation is the radar detection

problem in the presence of colored noise and interference. Mentioned in the introduction,

the challenging RF sensing paradigm (Figure 1.2) is exacerbated by the number and types

of targets and the contested, congested spectrum. We note that simply interrogating the

scenes is no longer sufficient, the radar must adapt. But, how to know best where to put the

DOF in the waveform design problem, maximizing SINR, minimizing ISL or efficient use

of energy? Or some combination of all three (or others)? And, what are the consequences

to one if emphasis is placed on another? Answering these questions, broadly, is the product

of performance prediction models, derived in this dissertation.

In Figure 1.4, we give a notional example of how we can use performance models for

adaptive radar waveform design using spectral efficiency [22] to describe the environment.

The Figure illustrates the loss in SINR as the constraint (modulus or range-sidelobes in this

case) is applied for a particular spectral efficiency scenario. Understanding the trade-off

between SINR and the constraint can help avoid over constraining the waveform design

and unnecessarily relinquishing SINR performance .

1.3.3 Current Solutions Being Worked

A significant gap exists in the understanding of how constraints place on the waveform

design affect the SINR performance. We note that performance prediction for radar wave-

form designs developed in this dissertation, are not design techniques, but rather, a tool to

provide guidance to the waveform designer. In Figure 1.5 we suggest strategies in which

performance modeling can support the waveform design process managed by the controller

in the FAR scheme. We expand upon the trade-off in the waveform computation strategy

10
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Figure 1.4: Notional example of the trade-off between constraints and SINR for adaptive
radar waveform design.

between a fixed (non-adaptive, decided prior to the mission) providing fast computation

(non-existent, in this case) and the constrained optimization without smart initialization re-

quiring the highest of computations. We see performance models can provide support in

all the strategies mentioned and the theorized benefit when the models are effective.

In [16, 23, 24] they examine development of performance models for range-sidelobe

and modulus constraints, both jointly and individually. It is shown a nonlinear relationship

exists between the application of the waveform constraint and the performance degrada-

tion, from optimal. This is a novel result and suggests that fewer DOF can be placed to

meet the constraints if the designer is willing to release limited control over the design and

these can be re-purposed towards SINR maximization.
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Figure 1.5: Illustration of the role performance models play in aiding the decision making
process of an adaptive radar.

1.4 Contributions

This dissertation includes six significant novel contributions, culminating in original in-

terference and noise models, new signal designs and advanced performance models for

adaptive radar. These contributions are introduced in the following sections.

1.4.1 Data Models (new and legacy)

In this dissertation, we make use of three important data models to represent the inter-

ference and noise covariance matrix. We note that conventional models for representing

power spectral densities, and their corresponding covariance matrices, fall short in char-

acterizing the statistical properties and other features for both the noise and signal bands.

This leaves algorithm designers limited resources to perform realistic Monte Carlo analy-

sis. In this dissertation, we develop a new practical technique, derived from measured data,

to generate unique instantiations of radio frequency interference in urban North American
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environments. Additionally, we make novel use of a general utility I + N model not pre-

viously used for waveform design analysis. Portions of this Chapter have been previously

published in [25].

Current approaches to estimating RFI (see Figure 1.6) involve either the collection of

spectral data in various environments to characterize the interference or the use of aggrega-

tion tools, such as TV FoolTM, which provide analysis of over-the-air (OTA) broadcasts [2].

These approaches can be costly, cover only a limited bandwidth, or limited to only a few

instantiations. Additionally, modeling colored interference and noise covariance matrices,

with desired power spectral density (PSD) traits, is useful for waveform design, devel-

opment, and analysis [26]. Many attempts in literature employ what is mathematically

convenient but not necessarily accurate in representing real-world interference [15,27]. As

such, only conjecture that performance trends seen in toy examples will translate to repre-

sentative data is possible. This is a risky assumption.

The first I+N model considered is that most commonly seen in the waveform design

“Sniff” Data CollectionLow Model Order AR TV FoolTM

low fidelity non-stochastic simulation difficult to acquire

Figure 1.6: Current approaches to synthetic RFI generation and data collection challenges.

literature, a toy example used to show performance differences in various design tech-

niques, the low model-order auto-regressive (AR) model. This model is useful for its ease
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of generation in Monte Carlo analysis, but, as we will show, is not a statistically accurate

model for real-world data.

Second, we consider a model with general utility gives that has convenient asymptotic

properties, like a closed-form representation of the eigen-spectrum and ease of generation,

but, may not be suitable for all scenarios.

Lastly, we derive, from measured data, two synthetic PSD models by employing a

novel approach where a two-state Markov chain is used to define the spectral transitions

from signal-and-noise present to noise-only and vice versa. We then modify the sequence

with signal and noise specific amplitude distributions to arrive at the synthetic PSD. This

is advantageous over current approaches in multiple ways. First, we are able to exploit

the unique underlying phenomenology inherent to the UHF bands’ power spectral content.

Second, the technique requires limited computing power and time, and therefore is also

cost effective.

These models allow us to illustrate the dependence on the scenario in SINR degrada-

tion as a function of the constraints. It is desirable to use real-world scenarios to provide

accurate performance estimates, not just toy examples. Details are found in Chapter 3

1.4.2 Eigen-Basis Analysis of Modulus and Sidelobe Constrained Radar

Waveform Design

The second unique contribution is an algorithm to develop a qualitative understanding the

role the Eigen-basis of the colored noise and interference covariance matrix plays in con-

strained radar waveform design. We jointly constrain the modulus and range-sidelobes to

show the trade-off between each constraint and the SINR performance. We accomplish by

solving a cascade of optimization problems that are analyzed through Monte Carlo simu-

lation trials. This requires a structured approach to the design of the waveform and well

defined definitions of the constraints and I + N. This work has been previously published

in [16].
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We investigate the impact of constraints on the basis dimension of the I + N covari-

ance matrix eigen-space used to represent the desired signal (via discrete Karhunen-Loève

expansion [28]) . As expected, when constraints are applied to the waveform, a larger basis

is required to meet the design needs. Next, we derive relationships between the constraint

definitions used in this analysis and more familiar constraints, peak-to-average-power ratio

(PAPR) and PSLR. We also prove or disprove the convexity of the constraints. Careful

consideration must also be given to the initialization of the optimization problems, for, as

we will show, the sidelobe constraint is non-convex and the solution will be dependent on

the starting waveform.

Additionally, in this contribution, we develop a novel approach for constrained wave-

form design for detection performance analysis. This research advances our understanding

of the impact of constraints to SINR under the assumption of accurate representation of the

second order statistics of the noise and interference covariance. Of course, actual SINR

will depend on many others factors; target location, radar cross-section (RCS), and carrier

frequency among others. This new algorithm could be employed to improve the decision

making capability of an adaptive system and reduce real-time through-put requirements.

The details are found in Chapter 4.

1.4.3 SINR Performance Prediction for Modulus and Energy Con-

strained Waveform Design

The third novel contribution, previously submitted for publication [29], is the development

of a performance model for SINR as we apply modulus constraints on the radar waveform

design. Of course, constraints on waveform design are manifestations of the operational

paradigm. For example, the peak-to-average power, where unity would be a constant mod-

ulus waveform, prevents a large power scaling due to the nonlinearity of a radar systems

power amplifier and simplifies recognition of the target distortion on receive while also

ensuring efficient use of dynamic range. Typically, a constant modulus waveform design is
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used to prevent this power loss. Here, we relax this requirement to investigate the effect on

SINR in non-phase only designs with finite energy.

This effort requires development of a new, simplified function to represent the mod-

ulus perturbation from phase only waveforms. Next, we employ asymptotic results from

random matrix theory (RMT) to derive accurate performance prediction of the SINR given

a modulus constraint. In addition, in this section we develop innovative performance mod-

els for the SINR as a function of the modulus for two classes of colored interference envi-

ronments and a random interference environment. We also report barriers for developing

additional analytical results for this approach. Therefore, Monte Carlo computer simula-

tions and measured data are used to validate the analytical findings. Details can be found

in Chapter 4.

1.4.4 Cumulative Modulus Performance Models for Energy Constrained

Waveform Design

The forth distinct contribution of this dissertation is the derivation and analysis of a new

performance model to estimate the cumulative modulus (CM). This derivation is a function

of the eigen-basis dimension of the interference and noise covariance matrix required to

generate the waveform. Motivated by the well-known optimal design solution for SINR,

the Rayleigh solution or the minimum eigenvector waveform, we implement a formulation

where a linear combination of the eigenvectors of the noise and interference covariance ma-

trix comprises the waveform. Under the Rayleigh solution, the waveform is defined by a

single eigenvector, but applying waveform constraints implies additional eigen-dimensions

must be spanned. In doing so, we point out; any waveform may be viewed as a linear com-

bination of the eigenvectors of the interference and noise covariance matrix.

The novel performance prediction model developed gives a generalized first-order

approximation of the eigen-basis dimension (i.e. the approximate minimum number of

eigenvectors) required to achieve a certain waveform modulus. Understanding these per-
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formance trades can improve/enhance the decision making process of an adaptive system.

Lastly, we observe and report the performance response for several representative interfer-

ence types and validated against measured data. Details are found in Chapter 4

1.4.5 SINR Performance Prediction for Sidelobe Constrained Wave-

form Design

The fifth significant contribution we propose is a new model for the SINR performance

when a sidelobe constraint is applied on the waveform design. For this contribution, we

discuss the role of the integrated sidelobe parameter for adaptive radar signal design as

it pertains to SINR performance. We do so by undertaking a design methodology that,

again, limits the basis dimension of the waveform while placing a finite energy constraint

on the optimal ISL solution. Next, we will develop new equations to predict the SINR

performance when a sidelobe constraint is applied for various interference classes. Monte

Carlo simulation trials and measured data are designed to measure the impact to SINR

on the ISL and validate the accuracy of the models. This material has been accepted for

publication in [24]. Details are found in Chapter 6.

1.4.6 ISL Performance Models for Constrained Waveform Design

Lastly, to complete the research, we propose the sixth unique contribution be develop-

ment of a model of the ISL constraint as a function of the eigen-basis dimension of the

interference and noise covariance matrix required to generate the waveform. We have de-

veloped an analytical result for the expected ISL as a function of multiple variables that

we validate against synthetic data. The integrated sidelobe constraint as a signal design

criteria has been studied in great depth [3,30–34] and we note its important role in multiple

radar functions, including reducing the number of false alarms, improving multiple target

resolution and efficient spreading of the energy contained within the signal. Others have
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investigated performance models for similar metrics, integrated sidelobe ratio and peak-

sidelobe ratio but limited the data models of noise and interference modeled to Bernoulli

distributions [35, 36].

The literature also mentions several design methodologies for limiting sidelobe lev-

els, including; periodic autocorrelation function technique that has zero sidelobes [37],

and similarly a cyclic technique PeCAN [14, 34] or a competing technique Signal Wave-

form’s Optimal Under Restriction Design for Active Sensing (SWORD) [15], among oth-

ers. However, the progressive consequence to SINR when synthesizing waveforms with

these techniques is unclear. We demonstrate the accuracy of the performance prediction

models through use of measured interference and noise data to generate the covariance ma-

trix. A majority of this work has been submitted for publication in [38]. Details can be

found in Chapter 6.

1.5 Outline of Dissertation

Each Chapter will begin with a brief synopsis and end with a brief conclusion. In Chapter

2, we conduct a review of relevant past literature, with emphasis on waveform design al-

gorithms, applications and challenges to fully adaptive radar, asymptotic results in random

matrix theory and other mathematical tools, and radar performance models. For Chapter

3, we derive interference and noise covariance matrix models and explain the potential ad-

vantages and pitfalls for each model when used to evaluate waveform design performance.

We discuss our initial results and observations for the jointly constrained waveform de-

sign problem in Chapter 4. In Chapter 5, we discuss research that develops performance

prediction models to quantify the impact on SINR when an amplitude constraint is placed

on a radar waveform design. Our research on SINR performance for range-sidelobe sup-

pressed waveforms is given in Chapter 6. Then, in Chapter 7, we discuss possible avenues

for future research. Finally, in Chapter 8 we summarize the dissertation and offer some
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closing remarks followed by the comprehensive Bibliography and related appendices. A

chapter dependency chart is given is Figure 1.7 to allow the readership to select only the

components of interest.

Chapter 1

Introduction

Chapter 2

Literature Search &
Historical Background Chapter 3

Interference &
Noise Models

Chapter 4

Jointly Constrained Waveform
Design SINR Analysis Chapter 5

SINR Analysis for Modulus
Constrained Radar Waveforms

Chapter 6

Subspace Approach to Performance
Analysis for Range-Sidelobe

Suppressed Waveforms Chapter 7

Future Work

Chapter 8

Summary and Closing Remarks

Figure 1.7: Chapter dependency chart.

1.6 Notation

The following notation will be used throughout the Dissertation. We denote column vec-

tors as underlined lowercase letters. The nth entry of a column vector s is characterized sn.

Matrices are shown using boldface capital letters. Scalar quantities are as capital letters.

Re{·} and Im{·} represent the real and imaginary components of a complex argument, re-

spectively. The Hermitian operator is given as (·)H , while the expectation operator is E{·}.

The L2 and L4 norms are represented as ‖ · ‖2 and ‖ · ‖4, respectively. The optimal solu-

tion is denoted as (·)∗. The partial derivative operator is indicated by the ∂ identifier with

the gradient as ∇ and the Hessian denoted H. The Hadamard operation is given by the �

symbol while ∼ denotes a probability density.
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The optimal solution is denoted as (·)∗. The vec operator on a matrix stacks the

columns of the matrix in a single column vector, such that, for X = [ a bc d ], vec(X) =

[acbd]T .

1.7 Chapter Summary

This chapter included several background items that provide context for the research de-

scribed in the dissertation. This included a description of the six novel contributions of the

dissertation, the notation, conventions and several definitions used in the document. We

also motivated the use of performance models in an adaptive system. We also gave an ex-

ample and use-case, with notional illustrative example, for performance models of SINR

as constraints are applied to waveform..

Performance models can be successful in addressing the top concerns. Knowing the

SINR performance is a function of the interference and noise, it is imperative to have ac-

curate knowledge, or an accurate model, of the statistics in order to develop a useful tool.

In summary, we have motivated the use of performance prediction for radar waveform

design for detection. We have given a detailed use-case and discussed the primary reasons

for performance models for adaptive radar.
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Chapter 2

Literature Search and Historical

Background

In this chapter, we present a focused literature search and discuss some of the relevant his-

torical background in waveform diversity and design. Due to the limitations of prior work

in performance prediction, we consider the historical work in design to help guide the fo-

cus of the performance prediction efforts. We note that waveform diversity and design

has witnessed a widespread resurgence over the last 10-15 years. This is evidenced by the

increase in number of articles, books, funding increases, special sessions in conferences

and workshops, and special issues on selected topics in waveform diversity [13, 39, 40].

While extensive literature exists in the areas of waveform diversity and optimization with

emphasis towards improving many typical functions of radar (e.g., detection, automatic

target recognition, imaging, electronic warfare, etc.), it is impractical to review these topics

entirely. Therefore, to avoid confusion and dilution of the primary contributions, we limit

the discussion to constrained radar waveform design and the SINR performance.

In section 2.1 we mention some of the broader and more foundational materials. Sec-

tion 2.2 gives a review of common types of radar waveforms and their applications. We

discuss current radar performance models and the need for the development of additional
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models in section 2.3. A cursory review of the concepts of Fully Adaptive Radar (FAR)

is in section 2.4. In section 2.5 we review useful conclusions derived from random matrix

theory (RMT), other mathematical tools. We then discuss current data modeling techniques

for colored interference and noise in section 2.6. Finally, we summarize the chapter in sec-

tion 2.7.

2.1 Broad Background Material

There have been numerous books written on different aspects of waveform design for radar.

Some of the more popular and fundamental texts in the field of signal design and radar

include [6, 13, 41–46]. These texts provide a detailed examination of the rich history of

waveform design for radar and we employ the definition of waveform diversity from [45]

as

Adaptivity of the radar waveform to dynamically optimize the radar perfor-

mance for the particular scenario and tasks.

There have also been several survey papers on various topics in waveform design for

radar. For example, Stoica et al., provide a good discussion of the use of transmit code

sequences for range resolution and detection [47]. In 2009, Sira [48] wrote on adapting the

transmit waveform to match the sensing task and environment. In 2009, Calderbank [49]

wrote on waveform diversity in signal processing and the control of DOF in the radar

illumination pattern. Lastly, we mention the 2009 paper by Benedetto, et. al [9] that

mentions the important role the ambiguity function plays in phase-coded waveforms.
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2.2 Review of Review Waveform Designs

Early radar systems employed the linear frequency modulated (LFM) or chirp waveform

or the simple pulsed waveform [50, 51]. Since this time, an abundance of techniques have

been developed for which there are many applications. In the sections that follow, we

explore and define many common types of radar waveforms and their application to this

dissertation.
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Figure 2.1: Seminal contributors in waveform and filter design for radar and inspired addi-
tional works.
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2.2.1 Binary Coding Techniques

Phase-coded sequences, such as binary code sequences, are attractive because they are

straightforward to generate in a radar transmitter [47]. They can provide considerable side-

lobe suppression (e.g. Barker [52]), although no known sequence takes on satisfactorily

small values for practical tasks. Other examples of binary phase codes include the min-

imum peak sidelobe (MPSL) sequence or the chaotic sequence, such as that described

in [53]. However, these codes offer limited DOF for adaptation in colored interference

environments and therefore offer limited SINR performance improvement. For additional

information and examples (e.q. Golay or Gold), we refer to the following [9, 54–57].

2.2.2 Polyphase Techniques

Polyphase waveforms are described as those that allow any possible phase values for the

waveform. These signals, evidently, offer additional flexibility in designing the sidelobes

over a binary code, are constant amplitude, and again, straightforward to generate in a radar

transmitter [47]. Many examples exists of polyphase waveforms for various applications,

some of the more popular are the generalized Barker sequence, the P1, P2, P3 and P4

sequences, Zadoff-Chu sequence, Frank codes and the nonlinear FM [37, 58–60]. These

waveforms provide good results for thumbtack ambiguity function response. Additional

work has been completed on sidelobe design for practical concerns in [34, 61].

2.2.3 Modulus or PAPR Constrained Waveform Design

Of course, the aforementioned Binary and Polyphase techniques assume a constant modu-

lus signal, but, in this section, we give a discussion of the literature on waveform designs

when the amplitude, is explicitly considered. In 1973, Mesiya [62] first discussed the need

for phase only waveforms because the transmitter in most modern systems should operate

in power saturated mode to obtain maximum average power. Since then, much research
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has focused on the optimal design, given restrictions and environmental concerns, of phase

only signals [63–66]. Patton discussed the joint role of the modulus and the ambiguity

function in [27, 33]. In this dissertation, we consider to consequences when allowing the

modulus to adjust and relate the cumulative modulus to the PAPR in Chapters 4, 5.

2.2.4 Range Sidelobe Suppression Constraints

An important practical aspect of radar waveform design is the suppression of range side-

lobes [67]. Pulse compression can simultaneously provide good range resolution (band-

width dependent) and allow for additional power on the target by increasing the pulse

length [9, 41, 68] while maintaing resolution properties. It has been shown that on receive,

the application of frequency domain windowing can reduce the time sidelobes [43,69], but

in this dissertation, we are focused on the transmit design to achieve lower range sidelobes

and the SINR performance hit. Additional work relating to the minimization of the energy

outside the main lobe of the waveform can be found in [30, 31, 34, 70]. In this disserta-

tion, we develop performance prediction models for ISL suppression, details are found in

Chapters 4, 6.

2.2.5 Waveform Design for Clutter Suppression

The radar detection problem could be defined as the challenge of separating the objects of

interest (targets) from the objects not of interest (clutter) by illuminating the scene with a

particular waveform [45]. The best waveform to solve this problem is decidedly unknown.

There is however, a diverse and abundant history of possible waveform solutions. Included

in this are published techniques from information theoretic perspectives [71,72], joint trans-

mit and receive designs [73–79] and signal dependent clutter designs [61, 76, 80, 81]. An-

other vein of research considers the waveform design from the perspective of multiple

pulses for clutter mitigation, with examples in [82–85]. Lastly, several papers have been

published that consider knowledge aided designs [86], nearly optimal designs [87] and ac-
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tive and passive clutter jointly considered [32]. In this dissertation, we use an eigen-basis

waveform design technique to imply SINR maximization in the presence of colored inter-

ference.

2.2.6 Additional Selected Topics in Waveform Design

As radar technology has improved, we have seen the sophistication of the waveform and

the design techniques also increase. This section gives a cursory overview of some topics

and concepts available in the literature that we felt help give a more complete picture for

motivating performance prediction models of constrained waveforms.

In 1961, Sussman discussed use of the AF shaping to the needs of the system [30].

Other work has been completed on designing the waveform to be similar to a desired

waveform [54]. We have adaptive pulse diverse waveform designs for sonar and radar

applications [88, 89]. In [90] they discuss the congested spectrum challenge with a sparse

frequency waveform design technique. In [91–93], they discuss adaptive signal design

to improve target recognition. Lastly, considerable waveform innovation and novel ap-

proaches have been developed and analyzed, while not appropriate to discuss in detail in

this dissertation proposal, we refer to the following papers [94–99].

2.3 Radar Waveform Performance Models

This section is devoted to discussing the current models available for radar and the appar-

ent absence of performance models for constrained waveform design. We begin with the

practical models of the radar target scattering statistics, known as Swerling models [100].

They describe multiple statistical models for various target types. These models have been

proven extremely useful for statistical analysis for detection/estimation theory develop-

ment [67].

Another example of a performance model used in radar is the necessary sample sup-
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port required to estimate the second-order interference and noise statistics of background

clutter. This is known colloquially as the Reed Mallett Brennan (RMB) rule [21]. This

model provides a practical estimate of the training data required for adaptive arrays to be

effective against avoiding noise and interference.

Of course, statistical models for the noise and interference are prevalent in almost

all waveform development techniques, as the Gaussian approximation is ubiquitously de-

clared.

We note a considerable absence in the literature for performance modeling of con-

strained waveform design. In fact, the only work (that we are aware of) is on sidelobe

predictions for spectrally-disjoint radar waveforms [35, 101]. This lack of previous work

in the field of performance models for constrained radar waveform design points to the

novelty of this dissertation.

2.4 Fully Adaptive Radar

Modern radar systems are becoming increasingly more flexible in their ability to perform

multiple missions/modes [19]. This is evidenced by the digitization of the RF back end,

(i.e. its moving closer to the aperture [102]). To take full advantage of the hardware ad-

vances, the Fully Adaptive Radar (FAR) construct allows sophisticated DSP techniques to

prevail in exploitation of the received signal. Also, on transmit, digital arbitrary waveform

generators provide a mechanism to move away from rigid, conventional, although histori-

cally effective, waveforms [5].

For our purposes, we can more succinctly define the FAR as: a closed loop feedback

controller from the receiver to the transmitter [4]. The challenge is how to best optimize all

of the available DOF on transmit and receive to maximize radar performance. Of course,

then, a critical component of the FAR construct is the adaptive waveform design capability

for optimal performance. However, due to the large number of free parameters, it becomes
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readily apparent that the the closed-loop operation comes at a significant computational

burden [103].

In this dissertation, we develop performance prediction on the effects of constraints

on the waveform SINR to aid in the decision making process of what to transmit for FAR.

2.5 Random Matrix Theory and Mathematical Tools

Most of the derivations and performance prediction models outlined in the previous sec-

tions use mathematical conclusions and asymptotic results from random matrix theory lit-

erature. In this section, we briefly discuss some of the relevant results and other tools used

throughout the dissertation.

A seminal paper on the asymptotic limits of eigen-values distributions was published

in 1972 by Marčenko-Pastur. The eigen-spectrum is derived from this distribution and used

in certain SINR performance models in this proposal [104]. This is unique in that a closed-

form expression for the eigen-spectrum is available1.

In 1972, Gray inspected the asymptotic eigenvalue distribution of toeplitz matrices

[105, 106]. Also, Gray published a useful book on matrix theory and linear algebra that

provides several insights in [107]. Lastly, for the complex derivatives and matrix differen-

tiation, we refer to the following [108, 109] for techniques and helpful conclusions.

2.6 Interference and Noise Covariance Matrix Models

We will review, in detail, the three I + N covariance models used for Monte Carlo analysis

in the following chapter. Here, we discuss current approaches to estimating RFI which,

involve either the collection of spectral data in various environments to characterize the

interference or the use of aggregation tools, such as TV FoolTM, which provide analysis of

1The closed-form expression for the eigen-value distribution is an asymptotic result on the average eigen-
values as the dimension of the covariance matrix approaches∞.
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over-the-air (OTA) broadcasts [2]. These approaches can be costly, cover only a limited

bandwidth, or limited to only a few instantiations. Additionally, modeling colored inter-

ference and noise covariance matrices, with desired power spectral density (PSD) traits,

is useful for waveform design, development, and analysis [26]. Many attempts in litera-

ture employ what is mathematically convenient but not necessarily accurate in representing

real-world interference [15, 27].

For example, use of an low nth order auto-regressive (AR) model of the interference

is easy generate, but, as we show, not statistically similar to actual spectra ( or possess

representative features). This questions the utility of the AR-model to yield useful conclu-

sions from analysis. Another key issue motivating the development of spectra generation

techniques is the need for rapid algorithm development where access to synthetic data can

improve modeling and simulation analysis. These concerns are addressed in this disserta-

tion with multiple new data models developed for improved practicality.

2.7 Chapter Summary

In this chapter, we reviewed the background literature in our areas of research. While doing

so, we observed a considerable absence in the literature for performance modeling of SINR

for constrained radar waveform design. This is a significant concern as radars become more

agile on transmit and will require a deeper understanding of how the performance will react

when forced to constrain the transmit waveform.

Additionally, we make use of a field of mathematics not typically seen in radar, Ran-

dom Matrix Theory. The asymptotic results of this field provide a general framework to

compute close-form expressions of the eigen-values of the covariance matrices, and thus,

initial analytical results are possible. We will refer back to sections of this Chapter through-

out the dissertation when needed.
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Chapter 3

Interference and Noise Models

One of the challenges in the development of performance prediction models for waveform

SINR (as a function of the constraints) is the selection of the interference and noise covari-

ance matrix model, as mentioned previously. Typically, a toy example of the interference

and noise covariance is used for theoretical development, owing to the simplicity to gen-

erate in MATLAB [110] and ease of use, not what is actually representative of real world

data.

Still, many situations in algorithm development require the use of Monte Carlo tech-

niques to ascertain the effectiveness of an algorithm under varying conditions. We consider,

for example, the perspective of radars operating in complex operational environments (see

figure 1.1) where, when not thoroughly considered, RFI can degrade the detection perfor-

mance of the system and/or limit the effective operating bandwidth [111]. For perspective,

in figure 3.1 we give the spectrum survey data for a mid-size metropolitan area [2] from

100MHz to 1GHz. We note the complexity in the environment must be considered in wave-

form design and performance prediction to be effective.

Therefore, it is critical that the algorithms be robust to varying narrowband RFI envi-

ronments. In this Chapter, we develop the covariance matrix structure and eigen-spectrum

approximations for three unique interference and noise classes used in Chapters 4, 5, 6 to
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Figure 3.1: Tillman-Pit spectrum survey data [2].

derive the performance prediction models and perform the analysis.

In section 3.1 we discuss the oft-used low-order auto-regressive model. Next, in sec-

tion 3.2, we employ a novel use of a random matrix that possesses a closed-form expression

for the eigen-spectrum of its covariance matrix. Then, we report a new result in synthetic

data generation that is derived from measured data in section 3.3. We compare and contrast

each model and summarize in section 3.4. Parts of this chapter are included in a journal pa-

per [29] which was submitted for publication in 2016. Final results were published in [25].

3.1 Auto-Regressive Model

In this section, we define the low model order AR colored interference covariance matrix

model and the approximation of its eigen-spectrum. To generate the covariance, we use
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an auto-regressive process driven by Gaussian white noise whose auto-correlation function

(ACF) can be represented by a decay function. We note this model to have low fidelity

however, relative to practical power spectral densities (as shown in future sections), but

will use to perform Monte Carlo analysis due to its prevalence in current literature. The

received interference and noise model is then given as:

Xk =
P∑
p=1

φpXk−p + εk, (3.1)

where P is the model order, k the lag position, φp the model coefficients and εk the driving

white noise with distributionCN(0, 1). The auto-correlation of the time series (RXX(m) =

E{X(k)X(k−m}) defines the covariance matrices, given as KAR. This all-pole model will

generate spectrally peaky RF colored environments and the magnitude of the coefficients

φp describes how correlated the samples are in time.

In this dissertation, we consider two variants. First, a highly correlated ARhigh model

and then, a weakly correlated ARlow model. The highly correlated corresponds with pole

locations (θp) whose magnitudes are uniformly distributed over 0.75 ≤ |θp| ≤ 0.9 with

uniform phase. The weakly correlated corresponds to pole locations whose magnitudes are

uniformly distributed over 0.1 ≤ |θp| ≤ 0.25, also with uniform phase distribution. We

compare the eigen-spectrum for each correlated model against the MP spectrum for length

M = 64 signal size (correlated eigen-spectrums are empirically computed as the average

of 1000 realizations). and we display the results in Figure 3.5 for the MP, ARlow and ARhigh,

both of model order 3. The eigen-values are sorted in ascending order and we recognize

the MP as a balanced model for the eigen-spectrum when compared against the AR.

Additionally, one of the most attractive properties of the AR model to represent a

PSD, and thus a covariance matrix, it its ease of generation. The low model order AR

PSD is a useful tool to compare between two waveform design algorithms and constraints.

However, we will show in subsequent sections that this model deviates from measured data

32

Approved for public release; Distribution is unlimited.



(for certain bands) and therefore, yields misleading representations of SINR performance

for the waveform.

This model is used in Chapter 4 to prove out initial results prior to running analysis

with more representative covariance models.

3.2 Random Interference Covariance Matrix Definition

In this section we discuss the Marčenko-Pastur (MP) model, a general utility model pred-

icated upon an asymptotic result from random matrix theory. This models considers the

case when prior information about the interference and noise spectrum is not available and

a balanced model of the eigen-spectrum is required.

Therefore, to generalize the covariance data representation, we use an asymptotic re-

sult reported in random matrix theory literature that states, in the limit of large data, that

the statistical behavior of eigenvalues of large (M & 32) random Hermitian matrices (see

(6.13) for description), under the assumption of a full-rank covariance with
∑M

k=1 λk = M

(equivalent to assuming constant noise power), conforms to the following Marčenko-Pastur

(MP) density when the matrix is square, a requirement for our analysis:

pΛ(x) =

√
4x− x2

2x
, x ∈ (0, 4]. (3.2)

This is an empirical distribution and, we refer the reader to [104] for further details. Ap-

plying the inverse transform sampling method [112] to (3.2), a closed-form representation

of the CDF, thus a mechanism to compute the expected eigenvalues is possible. We define

the CDF as:

M(x) =

∫ x

0

pΛ(z)dz, (3.3)

=
1

2π

(
√

4x− x2 − 2 arcsin
4− 2x

4

)
+

1

2
, (3.4)
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Figure 3.2: (left axis) Probability Mass Function for the Marčenko-Pastur asymptotic result
(M = 64). (right axis) The associated Cumulative Distribution Function for the Marčenko-
Pastur eigen-spectrum.

This data model is unique due to the closed-form expression of the eigen-value distribution.

This will allow for simplified development of the SINR models in the future Chapters. See

Figure 3.2 for depiction of this density (left axis) and the corresponding cumulative dis-

tribution function (right axis). For analytical tractability, we use this model to represent

the eigen-spectrum of a generic interference and noise covariance matrix enabling demon-

stration of the expected cumulative modulus as a function of the eigen-basis. Additionally,

in the practical case where no information about the noise and interference statistics is

available, this model would provide initial estimates of the eigen-spectrum, and thus per-

formance.

The covariance, for this data, is defined as

KMP =
1

M
ZZH , (3.5)
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Figure 3.3: Asymptotic Marčenko-Pastur eigen-spectum, derived from the density in (3.2)
with sample covariance eigen-spectrum generated from 25 random instantiations of the
data matrix for M = 64, for comparison.

where elements Zij are CN(0, 1√
M

).

As an example, in figure 3.3, we show 25 realizations of the eigen-spectrum of the

random matrix along with the theoretical asymptotic distribution for M = 64. This model

will be used extensively in Chapters 5 and 6 to show how the eigen-spectrum of the I + N

covariance matrix interacts with the SINR performance.

Using (3.2) to compute the survival function (complimentary CDF), S(x) = 1 −

M(x), we can compute the inverse survival function, Z(x) to describe the eigen-spectrum

35

Approved for public release; Distribution is unlimited.



for discrete, x, where x ∈ (0, 4], as

Z(x) = S−1(x) (3.6)

=
(

1−M(x)
)−1

(3.7)

=
2

π

(
2 arcsin

4− 2x

4
+ π −

√
4x− x2

)
. (3.8)

Then, to obtain the eigen-spectrum for an M -dimensional covariance, we generate M uni-

formly sampled values of x and transform with the function, Z to obtain eigen-values (λ)

that have MP PMF.

For some additional analysis, shown in Figure 3.4 is the MP eigen-spectrum (Z(x))

as well as sample eigen-spectrum from 25 random instantiations for M = 256. Also, we

compare the eigen-spectrum of the MP model against measured data. The measured data

is interference and noise data collected with system parameters listed in table 6.1 for an

air-to-ground radar operating at X-band. The standardized eigenvalues on a log scale are

shown against the theoretical model. We will use the eigen-value models to develop the

performance prediction models and validate agains the measured data set.

Table 3.1: Interference and Noise Measurement Specifications

Parameter Value
Bandwidth 1 GHz

Minimum Frequency 9.2 GHz
Maximum Frequency 10.2 MHz

Pulses 256
Fast-time Samples 256

Sample Rate 3 GHz
Number Channels 1
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Figure 3.4: Eigen-spectrum comparison of theoretical Marčenko-Pastur (3.2), sample co-
variance eigen-spectrums generated from 25 random instantiations of (6.13), and eigen-
spectrum of measured data with collection specifics in Table 6.1 for M = 256, for compar-
ison.

3.2.1 MP Comparison to the AR Model

We compare the eigen-spectrum for each correlated model against the MP spectrum for

length M = 64 signal size (correlated eigen-spectrums are empirically computed as the

average of 1000 realizations). We display the results in Figure 3.5 for the MP, ARlow and

ARhigh covariance matrix definitions. The similarities suggest that the MP model is a good

representation for certain data and allows for a convenient mathematical model of the eigen-

values.

In Figure 3.6, representative power spectral densities for a single instantiation of the

three classes of interference mentioned, are displayed. As expected, the MP has a large

dynamic range, owing this to its aversion to any particular frequency, while the ARlow has

distinct Fourier components based on the pole location but the overall distribution is still

”flatter” than the ARhigh whose model coefficients would place poles closer to the unit cir-

cle giving deeper nulls and higher peaks.

However, for these covariance representations to be useful in developing performance

models for SINR and cumulative modulus, the eigen-spectrum, in the expectation, must
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Figure 3.7: Single instantiation of circulant approximation ACF and corresponding covari-
ance magnitudes. Autocorrelation function of example covariance matrix compared with
the circulant approximation, (M = 64).

be known to a high confidence. Unfortunately, little is known about the probability-mass-

function (PMF) of eigen-values for covariance matrices whose underlying physical model

is based on an AR-process.

To overcome this limitation, though out the dissertation, we approximate the eigen-

values of correlated interference covariance matrices by invoking Szego’s Theorem. The

theorem states that, asymptotically, the distribution of eigenvalues of an autocorrelation

matrix approach the power spectrum as the dimension of the matrix increases, full de-

scription found in [113, 114]. For our purposes, this is convenient given the AR model.

Although, in order for this approximation to be valid, the eigenvectors of the covariance

matrix must be samples of a complex exponential (i.e. discrete Fourier transform (DFT)

matrix). Not typically the case for AR models, we are forced to approximate the covariance

via a circulant matrix which has been proven to be asymptotically equivalent in a certain

sense [105, 106].

In Figure 3.7 and 3.8 we give an example comparing an M=64 (relatively short) signal
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parison of the PSD for the clairvoyant and the circulant approximation. Higher power
frequencies are represented more accurately than lower power frequencies.

with its circulant approximation. The figure gives the autocorrelation function of a rep-

resentative ARlow covariance matrix with its circulant approximation and the covariance

matrix magnitudes for the circulant approximation. Additionally, in Figure 3.9 we give

the sorted eigen-spectrum for the known covariance and the corresponding estimate via the

sorted PSD and in Figure 3.10, a comparison of the PSD for a single instantiation. The ap-

proximation, even for this relatively short signal, is accurate in the eigen-spectrum and will

act as a useful model in this context and the approximation improves as the signal length

increases.

3.3 Synthetic RFI Development

Finally, in this section, we derive two new synthetic PSD models1 by employing a novel ap-

proach where a two-state Markov chain is used to define the spectral transitions from signal

1Accepted for publication in the 2016 RadarCon, [25]
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present to noise-only and vice versa. We then modify the sequence with signal and noise

specific amplitude distributions to arrive at the synthetic PSD. This is advantageous over

current approaches in multiple ways. First, we are able to exploit the unique underlying

phenomenology inherent to the UHF bands’ power spectral content. Second, the technique

requires limited computing power and time, and therefore is also cost effective.

3.3.1 Problem Statement and Signal Model

Evaluation of algorithms for RF systems operating in statistically stationary but geograph-

ically varying (i.e., different urban environments) UHF bands requires affordable, simple

generation of representative urban RFI based on real-world data characteristics.

Let’s say, for example, we could assume the signal and noise are complex, indepen-

dent, stationary and ergodic Gaussian random processes. These assumptions would give a

general Gaussian model described as

x = s + n (3.9)

where s ∼ CN(µs, σ
2
sI) and n ∼ CN(0, σ2

nI).

Since we are interested in modeling the PSD, we note this implies the power spectrum

analyzer output to be χ2 distributed with 1 complex degree of freedom. However, the signal

is confounded by real-world effects such as channel fading, indirect path contributions,

etc. [115]. Additionally, as more noise sources are multiplexed, the noise distribution is

similarly confounded. Such concerns manifest, in a statistical sense, by a move away from

the expected χ2 distribution. Representing the difference from the model and real-world

distributions is a major concern of this dissertation.
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3.3.2 Model Development

Our objective is simple, to remain in the class of easy to generate and convenient models,

like those currently employed and discussed in the previous sections, while improving upon

the statistical similarity of the model to real-world interference (i.e, entropy reduction) and

the inclusion of other desirable features of the PSD. We, therefore, leave higher-order ef-

fects modeling to others.

In the following sections we discuss two models. First, a model developed using a

systematic approach that is statistically similar to the measured data sets, denoted Model

1. The second model (Model 2), uses a more ad hoc approach based on reasonable con-

jecture that the signal distribution posesses additional features not allowed by Model 1.

The following sections discuss each of the four steps in the technique to produce synthetic

PSD’s in the UHF band and, in the case where no measurement data is available, we have

provided the necessary parameters to reproduce our results.

3.3.3 Rank Determination

To begin, as is the case in many signal processing problems involving radar, detection of

the number of signals (embedded in additive noise) is an important issue. For our concerns,

when given a sample PSD data set, we desire to know the number of frequency bins that

have a signal present. Accurate estimation of the number of occupied bins allows separa-

tion of the signal subspace from the noise to derive statistical properties from the measured

data.

To accomplish, we apply the principles discussed in [116] that allow determination

of the number of signals present after assertion of an asymptotic result on the measured

PSD data sets by invoking Szego’s Theorem. The theorem states that, asymptotically, the

distribution of eigenvalues of an autocorrelation matrix approaches the power spectrum as

the dimension of the matrix increases. A full description can be found in [113, 114].

For our signal and noise model, whose estimated eigenvalues are denoted λ̂i = li, i =
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1, . . . , k, it is reasonable to use the minimum description length (MDL) technique to com-

pute the rank of the signal subspace for a given data set. We recount the definition for MDL

for Gaussian distributed data [116]:

MDL(λ̂) = − log
{ρ
η

}
+

1

2
k log(N) (3.10)

where ρ =
∏p

i=k+1 l
1/(p−k)
i and η = 1

p−k
∑p

i=k+1 li, the geometric and arithmetic mean,

respectively and p is the problem dimensionality. Parameter k is the number of free adjusted

parameters, and N is the number of observations. This strategy can be applied to any

measurement set where the Gauss-Gauss signal model assumption is appropriate.

3.3.4 Shifted Gamma Distribution

Next, for Model 1, we appoint a shifted gamma distribution to represent the signal and

noise amplitudes of the PSD (where under the Gaussian signal model, a χ2 distribution

would prevail, a special type of the Gamma). The distribution has shape parameter α,

scale parameter β, and shift parameter γ such that it is generically described by the density

function:

Gα,β,γ(x) =
xα−1

Γ(α)βα
exp{−x

β
}+ γ (3.11)

where x ∈ (0,∞) and Γ(α) is the gamma function evaluated at α. The gamma distribution

is more flexible than a χ2 distribution, owing to the non-integer possibilities of the param-

eters, and permits higher fidelity variations to represent the distributions. We also note,

gamma and shifted gamma distributions have been used for probability modeling in many

fields [117].

For Model 1, we assume α, β, and γ are deterministic, for both the signal and noise

amplitude models, and can compute the maximum likelihood estimate (MLE) of the pa-

rameters for a given measurement set. The subscript (·)1 is used when referring to Model

1 and the superscript (·)s,n denotes signal or noise, respectively.
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With regards to Model 2, we again use shifted Gamma distributions to describe the

signal and noise amplitude distributions, with subscript (·)2. The noise model remains un-

changed. However, where in Model 1 we assert the shape, scale and shift parameters to

be deterministic, in Model 2 we claim, ad hoc, that the shape and shift are actually uni-

formly distributed. Use of this approach is further motivated by observing the PMF/CDF of

each of the individual signal bands as determined by the MDL. In figure 3.11, it is evident

that, while we could reasonably assume each came from a similar distribution, the param-

eters for each vary substantially. That is, we define new variables Θs
2 ∼ U [αmin, αmax]

Figure 3.11: PMF/CDF for each of the five signal bands identified by the MDL computa-
tion.

and Λs
2 ∼ 10U [log10(γmin),log10(γmax)] where the subscripts min,max denote the minimum and

maximum of the range for a uniform distribution (U ). For the shift variable Λ, this makes

intuitive sense as the it can be varied from the noise floor to the highest expected signal

value, uniformly on the log10 scale. Also, the Θ parameter allows for varied power effi-

ciency in the signal bands.

The likelihood function for such a distribution is not mathematically tractable and

therefore we compute the MLE of parameters for the uniform distributions independent of

the Gamma distribution. This, of course, voids the claim of maximum likelihood on the

parameters, but is a reasonable approach under the circumstance. And, as we will show,
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this will give us desirable features in the synthetic PSD, such as varying power levels in

the signal bands. The scale parameter β is then a function of the two random variables as

β =
Λs
2

Θs
2
.

3.3.5 Use of the Markov model

In order to model the signal and noise bands and the transitions between signal and noise

in the PSD, we use a a Markov process [118]. The most rudimentary such model is the

two-state model in which the random sequence can assume two discrete values. For both

Model 1 and Model 2 we define the two possible states with state vector δ = {s0, s1},

where s0 = 0 represents the noise state and s1 = 1, the signal state.

The transition matrix P is conveniently expressed in matrix form (for finite model

order) with transition probabilities Pr[XP(m) = si|XP(m − 1) = sj] with i, j indicating

the possible states and XP(m) being the sequence at index m. In our case, this is a 2 × 2

transition matrix given by:

P =

 Pr(s0|s0) Pr(s1|s0)

Pr(s0|s1) Pr(s1|s1)

 . (3.12)

Thus, we denote Markov sequence with transition matrix P and initial state δinit as XP ∼

M(δinit,P). Practically speaking, we define each probability as follows:

• Pr(s0|s0), probability of transition from noise bin to adjacent noise bin

• Pr(s0|s1), probability of transition from signal bin to adjacent noise bin

• Pr(s1|s0), probability of transition from noise bin to adjacent signal bin

• Pr(s1|s1), probability of transition from signal bin to adjacent signal bin

Then, to estimate the state transition matrix from measured data, with assumption of

stationarity, we form a binary sequence using the MDL results to assign frequency bins to
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states s0 = 0 and s1 = 1, representing noise and signal, respectively. We compute the

estimated transition probabilities using the sequences while incrementing positively over

frequency by counting each transition.

The random placement of RFI center frequencies and bandwidths allows liberal use

of the Markov model that provides unique flexibility in generating synthetic RFI PSD.

3.3.6 Signal and Noise Modification to Markov model

Lastly, for Model 1, we modify the Markov sequence, XP̂ with random variables f̂n1 ∼

Gαn
1 ,β

n
1 ,γ

n
1
(x) and f̂ s1 ∼ Gαs

1,β
s
1 ,γ

s
1
(x) to develop the synthetic UHF PSD as:

PSD1 =


(XP̂ + 1)� f̂

n

1
, if XP̂ = 0, for ∀m

XP̂ � f̂
s

1
, otherwise

(3.13)

where, m = 1, · · · ,M , M is the sequence length, m a frequency bin and P̂ is the estimated

transition matrix.

Our equation for Model 2 is similarly described as:

PSD2 =


(XP̂ + 1)� f̂

n

2
, if XP̂ = 0, for ∀m

XP̂ � f̂
s

2
, for each signal band

(3.14)

where f̂n2 ∼ Gαn
1 ,β

n
1 ,γ

n
1
(x) (same as Model 1) and f̂ s2 ∼ GΘs

1,β
s
1 ,Λ

s
1
(x) with Θs

2 ∼ U [αmin, αmax],

Λs
2 ∼ U [log10(γmin), log10(γmax)] and β =

Λs
2

Θs
2
. We point out that each signal band is an

independent draw of the random variable allowing for different mean-amplitude and vari-

ance.
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3.3.7 Measured Data and Technique Validation

Following the steps of the technique outlined in 3.3.2 and shown in figure 3.12, we examine

the statistical properties of several measured data sets and verify similarity of the synthetic

data to real-world RFI. We assume the collected data is prototypical and generalizable to

other geographies.

Measured 
Data

Compute MDL

Synthesize

Parameter Estimation
Estimate Markov Chain 
Transition Probabilities

Data Log

Evaluate

Figure 3.12: Synthetic data generation flow chart

The measured data, denoted the Tillman-Pit data, was collected using a spectral an-

alyzer fed by pyramidal horn antennas atop a 50-foot mast with collection parameters de-

noted in Table 4.1. This data was collected with a directive antenna for each of the four

cardinal directions (north, south, east, and west), giving four data sets to evaluate [2]. Fig-

ure 3.13 displays the spectrum survey for the east measurement set in dBm.

3.3.8 A Statistical Analysis

Rank of the Signal Subspace

Using the MDL in (3.10), we compute the signal subspace rank for the measured data, see

Table 3.3 for results, with N = 2000, analogous to the spectrum being well estimated. It
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Figure 3.13: Power spectral density survey of Tillman-Pit (eastern directivity) in actual
power (dBm) from 470 MHz to 700 MHz with collection parameters listed in Table 4.1.

is also worth pointing out that the Tillman-Pit spectrum data did not vary significantly for

different directions [2] and this is reflected in the MDL. Figure 3.13 displays the spectrum

survey for the east measurement set in dBm with the signal and noise subspaces, estimated

using the MDL, highlighted.

Signal and Noise ML Parameter Estimation

Following the flow chart in figure 3.13, we compute the dimension of the noise subspace

by subtracting the MDL, for a particular measurement set, from the total dimension. After

separating the signal and noise subspaces, we compute the maximum likelihood estimates

for the shape, scale and shift parameters of the Gamma distribution described in (3.11).

For reproducibility, the α, β, γ quantities have been computed for both the noise and

signal measurement sets and can be found in Table 3.4 for Model 1 and Table 3.5 for Model

2.

Also, for comparison, we show in Figures 3.15 and 3.14 the computed CDF for the
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Table 3.2: Tillman-Pit Collection Specifications

Parameter Tillman-Pit
Latitude 39◦ 46’ 11.9”

Longitude −84◦ 7’ 25.4”
Bandwidth 230 MHz

Minimum Frequency 470 MHz
Maximum Frequency 700 GHz

Bin Width 181.8 Khz
Samples 1265

Table 3.3: Minimum Description Length

Data North East South West
MDL 201 204 206 219

Tillman-Pit east facing measurement set against the hypothesis for the signal and noise

subspaces. The noise subspace is accurately modeled with the shifted Gamma distribu-

tion (confirmed with χ2-Test at the 1% significance level). However, the signal subspace

comparison denotes error in the hypothesized distribution. We believe this is attributable

to the limited data available to estimate the parameters and the simplistic process used to

represent multiple signals.

Table 3.4: Computed MLE of αs,n1 , βs,n1 , γs,n1 parameters for available measurement sets,
cardinal locations abbreviated (N, E, S, W) used in Model 1.

Data αn1 βn1 γn1 αs1 βs1 γs1
(N) 3.700 1.85e-10 2.43e-9 0.765 6.84e-8 6.02e-9
(E) 3.108 1.96e-10 2.63e-9 0.674 1.45e-7 5.33e-9
(S) 3.308 2.17e-10 2.64e-9 0.783 1.63e-7 6.76e-9
(W) 2.599 2.73e-10 2.56e-9 0.623 6.46e-7 6.76e-9
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Table 3.5: Computed MLE of Θ, λ parameters for available measurement sets, cardinal
locations abbreviated (N, E, S, W) used in Model 2.

Data αsmin αsmax γsmin γsmax
(N) 1.767 9.253 1.22e-08 1.23e-07
(E) 1.563 8.589 0.32e-08 3.50e-07
(S) 1.111 9.650 2.08e-08 3.50e-07
(W) 0.404 11.05 2.56e-08 2.56e-07
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Figure 3.14: Noise subspace comparison between measurement and hypothesized CDF for
the Tillman-Pit (east) collect.
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Figure 3.15: Signal subspace comparison between measurement and hypothesized (both
Model 1 and Model 2) CDF for the Tillman-Pit (east) collect.

Markov Transition Matrix Estimation

The estimated transition matrix for the Tillman-Pit (east) data gives the following (obtained

by counting the number of each transition type for all the available data sets):

P̂ =

 0.9944 0.0056

0.0296 0.9704

 . (3.15)

3.3.9 Synthetic RFI Example

Using the computed transition matrix and ML parameter estimates, we generate synthetic

PSD’s for both models using MATLAB [110]. The simulation results show that the pro-

posed technique performs well and we explore the accuracy of the technique in (3.13) and

(3.14) by generating example instantiations using the Tillman-Pit statistics and comparing

to conventional models.

The synthetic PSD for Model 1 (of same length and plotted against same frequen-

cies listed in Table 4.1) is shown in Figure 3.16 with estimated transition matrix in (3.15)
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Figure 3.16: Example synthetic PSD for Model 1 with the Tillman-Pit (east) data set pa-
rameters.
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Figure 3.17: Example synthetic PSD for Model 2 with the Tillman-Pit (east) data set pa-
rameters.
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and Gamma distribution parameters derived from the Tillman-Pit (east) measurement data,

listed in Table 3.4.

Generated from (3.13), this spectrum shows multiple desirable qualities such as; re-

alistic noise floor, dynamic range, wide noise bands and multiple randomly placed signal

bands. However, while we will show the statistical accuracy in the next section, it is evident

that other features are not present. For example, the mean-amplitude for each signal band is

constant and doesn’t reflect actual variation present in the measured data sets. Additionally,

this model has large signal band variance, equating to inefficient signal band power usage.

This is also not reminiscent of the measured data sets.

To correct for the lack of realistic features in Model 1, we allowed for random varia-

tion of the shift and scale parameters in Model 2. An example spectrum is shown in Figure

3.17 and we observe the desired variation in the mean-amplitude for the signal bands (this

could represent either power variation of the emitters in the scene or varied distances from

the receiver) as well as more efficient usage of the signal band power. Other desirable

features remain, like noise floor and dynamic range.

3.3.10 Goodness-of-Fit Analysis

To examine both models goodness-of-fit we look at three measures (1) χ2-Test (2) Trace of

the inverse covariance matrix generated from each PSD model and (3) the Kullback-Leibler

divergence.

χ2 Goodness-of-Fit Test

We compute the estimated CDF for both models with 10000 MC trials. For Model 1 we

observed a p-value of 0.0104 and, for Model 2, a p-value of 0.0118. A p-value above

0.01 for the χ2-Test denotes the test does not reject null at the 1% significance level when

compared against the Tillman-Pit (east) measured data set.
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and lower quartile (box outline), extreme values (whiskers) and the outliers (+) for multi-
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Trace of Inverse Covariance

For the same 10000 Monte Carlo trials used to compute the χ2-Test, we generate the co-

variance matrix associated with each PSD and compute the error in the Eigen-spectrum as

Error = Tr(R−1)−Tr(R̂−1) where R and R̂ are the Tillman-Pit (east) measured data and

modeled covariance matrices, respectively.

In Figure 3.19 we show the PMF of the computed Error for both models. As ex-

pected, Model 1 performs better, on average, than Model 2 with the error distribution

having a near zero mean (−6.83e − 07). Additionally, we note the large negative tail for

Model 2, suggesting the model can over value the Eigen-spectrum (equivalent to over es-

timating the power of the RFI). For algorithm design, this would give more conservative

estimates of SINR performance.

Entropic Measure

Lastly, the Kullback-Leibler divergence (KLdiv), an information theoretic criteria, is used

to observe the separability between the measurement distribution and the synthetic distri-
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Figure 3.19: PMF of the Eigen-Spectrum error in the measured covariance and synthetic
covariance generated from the PSD.

bution. The KLdiv is computed as:

KLdiv(D|Q) =
W∑
i=1

D(i) log
D(i)

Q(i)
(3.16)

where W is the number of data points in the discrete PMF, D represents the measurement

distribution and Q the test distribution [119].

We display the technique’s performance by providing, in Figure 3.18, a box plot com-

parison between the following test distributions; synthetic data (Model 1 - PSD1 and Model

2 - PSD2); Model 1 signal only (f̂s); AR with model order 3 process (AR3); AR process

with model order equal to the MDL (ARMDL) and a uniform distribution (U ). This was

computed for 10000 Monte Carlo trials where the average KLdiv, for the different distri-

butions, is displayed in Table 3.6. The AR model coefficients are estimated using Burg’s

method and the PSD is scaled to same dynamic range, relative to the measured data.

It is observed, in regards to the KLdiv, that our technique out-performs the conventional

models in representing the statistical properties of real-world RFI (where further from zero

56

Approved for public release; Distribution is unlimited.



Table 3.6: Average Kullback-Leibler Divergence

Test Distr. PSD1 PSD1 f̂s AR3 ARMDL U
E{KLdiv } 1.046 2.726 3.208 5.338 5.994 7.756

indicates higher separability). Additionally, as expected, the higher model order AR does

show improvement over the lower model order.

3.4 Chapter Summary

In this Chapter, we performed an examination of the three different data models used to

represent PSD’s, and their corresponding covariance matrices, that will be used to develop

the SINR performance models when constraints are applied to the radar waveform. Addi-

tionally, we have derived and analyzed two new approaches to generating synthetic RFI for

covariance matrix generation. This approach is based on a novel application of a two-state

Markov Chain that approximates the random distribution of signal and noise bands and a

statistical analysis of real-world data sets.

We were also able to show, from an information theoretic perspective, good improve-

ment over the widely used low-order AR model and that our technique closely approxi-

mates real-world RFI, such as the Tillman-Pit data. Lastly, one of the major advantages of

this technique is the simplicity in generating the synthetic RFI, requiring only the genera-

tion of three basic probability densities. The full MATLAB script for Model 2 is available

in Appendix 9.1.
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Chapter 4

Jointly Constrained Waveform Design

SINR Analysis

This chapter begins our investigation into the trade-space between practical constraints and

SINR performance in radar waveform design, an important topic in transmit-adaptive radar

processing. For signal design, one must be concerned with the signal-to-noise and inter-

ference ratio gain, hardware needs for waveform synthesis (including bandwidth require-

ments, power constraints, etc.), and the shape of the ambiguity function when compared

against a traditional non-adaptive signal (e.g. linear frequency modulated signal). We in-

vestigate the attendant performance degradation when constraints are imposed relating to

the aforementioned issues1. We explore the effect of these constraints on the objective

function performance as a function of signal length, interference complexity and constraint

thresholds.

The optimal unconstrained waveform design solution for SINR is the Rayleigh so-

lution or the eigenvector corresponding to the minimum eigenvalue of the noise and in-

terference covariance matrix (for purposes of generality, a full rank covariance matrix is

assumed) [76]. This is the SINR upper-bound. However, this waveform is unlikely to

1The work first published in A. M. Jones, B. Rigling, and M. Rangaswamy, “Eigen-space analysis of
constrained adaptive radar waveform design,” in Radar Conference. IEEE, May 2014.
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exhibit low integrated sidelobes (ISL), low peak sidelobe ratio (PSLR), or near unity peak-

to-average power ratio (PAPR) or constant modulus. We desire low integrated sidelobes to

prevent masking of low SINR targets while low peak sidelobes reduces false alarms. The

PAPR, where unity would be a constant modulus waveform, prevents a large power scaling

due to the nonlinearity of the radar system’s power amplifier and ensures efficient use of

dynamic range. The impact of each of these constraints with respect to SINR performance

is not completely understood, and this could be to the detriment of a cognitive/adaptive

system requiring fast decisions (that is, on which waveform properties should be given em-

phasis) affecting signal design based on the mission/mode of operation.

Any waveform may be viewed as a linear combination of the eigenvectors of the inter-

ference and noise covariance matrix. Under the Rayleigh solution (i.e. the , the waveform

is defined by a single eigenvector, but applying waveform constraints implies additional

eigen-dimensions must be spanned. This is a key point in our analysis and can be prob-

lematic, for as the design leaks waveform energy into the higher noise and interference

subspace, SINR will invariably degrade.

In [96], it is shown, with eigen-based waveform optimization, there exists a trade-off

between SINR performance and the output response of the matched filter. Although they

observe that as emphasis is placed on matched filter response it comes at the expense of

SINR, quantifying this expense was not defined. Also pertinent to mention, in [13], the use

of several least dominant eigenvectors to synthesize a waveform with desirable properties

is investigated and the performance is benchmarked relative to a linear frequency modu-

lated (LFM) waveform of the same bandwidth. Their results are evidence of the benefits,

i.e. SINR gain, in adaptive constrained signal design. Other researchers have investigated

optimal and sub-optimal designs with constraints as well as performance predictions for

radar [3, 27, 101], though none explicitly define the expense of applying constraints, rather

that the constraint itself is achieved.

In this Chapter, we develop the role of the eigen-basis when constraints are imposed
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on the waveform design problem to maximize signal sub-space projection output SINR.

We investigate the impact of constraints on the dimension of the clutter covariance ma-

trix eigen-space used to represent the desired signal. As expected, when constraints are

applied, a larger basis is required to meet the design needs. A similar approach is shown

in [32] where the design is based on minimizing a least-squares metric against a waveform

with desirable properties. In these results, we embark on observing this phenomenon with

the ultimate goal of a developing performance prediction models.

The remainder of this Chapter is outlined as follows. In Section 4.1, we develop the

signal model, discuss the constraints, and the waveform generation technique. In Section

4.2 we discuss the optimization problems to be solved to show the degradation in SINR

performance as a function of the eigen-basis. Section 4.3 includes the results of Monte

Carlo computer simulations. In Section 4.4, we state our observations and future work.

Lastly, the appendix, containing the derivations and proofs of non-convexity are given in

9.2.

4.1 Preliminaries

To explicitly show how the waveform impacts SINR, we derive, with standard mono-static

configuration assumptions, the quadratic form typically used in radar. In doing so, we

define the transmit waveform s ∈ CM×1, and denote the unprocessed received waveform

by

y = s + n, (4.1)

where n ∈ CM×1 is interference and additive noise. We match-filter the received waveform,

representing the target as an impulse, giving

sHy = sHs + sHn. (4.2)
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We can conservatively assume a known range and critically sampled on receive to give

the discrete column vector representation. Using this formulation, we assume a power

constrained transmit waveform, where, to enforce, we impose the constraint ‖s‖2
2 = 1

(choosing 1 for convenience). The SINR can then be calculated as

SINR =
sHssHs

E{sHnnHs}
=

1

sHKs
, (4.3)

where K ∈ CM×M is the interference and noise covariance matrix. For our analysis, the

covariance is assumed known (unless otherwise stated). We highlight the SINR formula-

tion in (4.3) is not the optimal SINR for joint transmit and receive filter design, studied

extensively in [120], but for the matched filter on receive only. This is an intentional inter-

pretation to investigate how the transmit waveform constraints affect the SINR.

Consequently, optimizations of the quadratic form, where the objective function is

seen in the denominator of (4.3) where, for fixed energy, maximizing the SINR is equiva-

lent to minimizing the denominator, gives

min
s

sHKs, s. t. ‖s‖2
2 = 1, (4.4)

an equation that frequently appears in radar waveform design applications. Again, s is the

waveform to be designed and K is Hermitian positive definite, and represents the interfer-

ence and noise covariance matrix capturing the second-order statistical properties.

We note the objective function in (4.4) is and is easily solved (for arbitrary s) using the

Lagrange method [121] where the optimum, in this case, is the aforementioned Rayleigh

solution waveform design seen also in [122,123]. However, this solution does not generally

produce a desirable radar waveform, as the eigenvector offers no guarantees with respect to

favorable ambiguity function properties or efficient use of transmit power. Thus, imposing

additional constraints on the waveform construction is necessary to achieve a radar wave-

form suited for practice.
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We investigate constraining the ISL, defined as the total energy of the sidelobes of the

waveform’s autocorrelation sequence (ACS) and computed as:

Jisl(s) = γ

M−1∑
k=1

|sHEks|2, (4.5)

where Ek ∈ RM×M is a zero matrix with 1’s on the kth superdiagonal. A scaling factor

(consistent throughout the analysis), γ is used to increase the dynamic range of the cost

function for simulation purposes in this Chapter only. In the appendix, Proposition 1.

shows (4.5) to be nonconvex, thus only local optimality claims prevail. A related metric,

the peak sidelobe ratio (PSLR), is defined as the peak sidelobe intensity normalized by the

ACS peak,

Jpsl(s) =
|rk′|2

|r0|2
, (4.6)

where rk =
∑M

n=1 sns∗n−k and k′ is the lag of the peak sidelobe. While constraining PSLR

directly requires M-1 inequality constraints, the Jisl is a single value. A relationship be-

tween (4.5) and (4.6) is discussed later.

Next, we investigate the cumulative modulus cost function, an atypical quantity used

here to describe the total point-wise difference of each chip in the waveform from a nor-

malized constant modulus waveform. The role of the fixed amplitude constraint was first

introduced in [62] and explains the practical needs for radar operation near power satura-

tion. A relationship can be made to the PAPR and is also discussed later. They are defined

as:

Jcm(s) =
M∑
l=1

[
1− sHΣls

]2
, (4.7)

where Σl = diag{el} and el = [0, · · · , 0, 1, 0, · · · , 0] where 1 is on the lth entry and

Jpapr(s) =
|s|2peak

s2
rms

, (4.8)
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where |s|peak is the peak amplitude of the waveform and srms is the root mean square of the

waveform. Proposition 2, in the appendix, we show in general, that (4.7) is non-convex.

Upon further inspection, we simplify (4.7) to:

Jcm(s) = M − 2 + ‖s‖4
4, (4.9)

where M − 2 is constant relative to s and is removed. Multiplying by a scaling factor,

γM , to increase dynamic range for simulation purposes in this Chapter only, gives the final

constraint as:

Jcm(s) = γM‖s‖4
4. (4.10)

Lastly, as a mechanism to explicitly observe the impact of constraints on the dimen-

sionality of the waveform design space, we will express the designed waveform as a linear

combination of an ordered subset of the eigenvectors of the interference and noise co-

variance matrix. For an eigen decomposition K = VHΛV where V = [v1 · · · vM ] and

Λ = diag{λ1 · · ·λM} such that λ1 ≤ λ2 ≤ · · · ≤ λM . We endeavor to use the the smallest

number of eigenvectors from the sub-dominant noise subspace to represent the signal. The

waveform is then represented as

s =
N∑
i=1

αivi, (4.11)

where αi is the ith eigenvector weight, and N ≤ M eigenvectors comprise the support of

s2.

4.2 Problem Formulation

In an original formulation, we discuss the role the eigen-basis of the noise and interference

covariance matrix plays in constrained radar waveform design. We apply a finite energy,

2Formally, a discrete Karhunen-Loève expansion [28], we see this technique first employed for radar
in [124], where the invention allows gradual modification of the waveform between competing properties:
maximizing SINR and the pulse compression characteristics of the waveform.
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sidelobe and modulus constraint on the waveform design and require the signal be an or-

dered subset of eigenvectors, as described in section 4.1. The problem formulation is thus

min
α

sHKs, s. t. ‖s‖2
2 = 1,

Jisl(s) ≤ εisl,

Jcm(s) ≤ εcm,

(4.12)

where the initial design satisfies all constraints. In practice the constraint thresholds (εisl

and εcm) for the problem in (4.12) are chosen to satisfy the needs of the system. However, in

some cases, the thresholds could be too prohibitive given the degrees of freedom available

in the design. As such, initialization of the problem to guarantee an initial design solution

inside the feasible region is necessary.

4.2.1 Threshold Settings

The SINR optimization requires setting the constraint threshold(s) to achieve desirable per-

formance. Therefore, it is important to relate the constraints to recognizable metrics. We

relate Jisl(s) to Jpsl(s) by setting εisl in the following manner:

1. Select acceptable PSLR (dB),

2. Convert from log to linear scale,

3. Adjust for code length, and scaling γ, with the assumptions that mainlobe has width

of 1 and exploit symmetry of ACS,

giving εisl = γ10
x
10 (M − 1) as the threshold, where x is the chosen PSLR. This gives an

upper-bound (worst case performance) on the average sidelobe level based on the length of

the code. This threshold does not, however, guarantee a minimum PSLR. The chart shown

in Figure 4.1 displays, for various average sidelobe levels, what εisl should be chosen for
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M = 16.

To relate the cumulative modulus threshold, εcm, to the more common PAPR we sug-

gest the following transformation:

1. Select acceptable PAPR (dB),

2. Convert from log to linear scale,

3. Multiply by scaling, γ,

giving the εcm = γ10
y
10 where y is the desired PAPR, see Figure 4.1. In the appendix,

Proposition 3. gives a proof that PAPR can serve as an upper-bound for the εcm threshold.

This property guarantees a designer a worst case PAPR performance of the constrained

waveform. In the following sections, we undertake development of a new algorithm and
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Figure 4.1: Average basis dimension for constrained waveforms of length 16 code over 5
Monte Carlo trials for each eigenvector and covariance matrix generated with AR-3 pro-
cess.

perform initial Monte Carlo analysis to give new insights into the SINR performance impact

when practical constraints are placed on the waveform design.
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4.2.2 Basis Dimension Selection and Initialization

To solve the optimization problem, first a feasible solution must be found that satisfies the

constraint thresholds. Therefore, appropriate initialization of (4.12) and selection of the

basis size N , for given constraint thresholds, is an important aspect of the solution, for

some threshold combinations may not be possible. While viewing the response of designs

when either the ISL or CM constraint is applied is instructive, it is not as practical. Both

constraints need consideration, and depending on the requirements, one may need more

emphasis than the other. To investigate, a 2-D simplex technique3 is used to view responses

from various weights and basis dimension (N ). The optimization is

min
α

βJisl(s) + (1− β)Jcm(s) s. t. ‖s‖2
2 = 1, (4.13)

where β ∈ [0, 1]. When β = 0, the emphasis is solely on the modulus, while a β = 1

constrains only the ISL. If the output signal of the minimization of (4.13) achieves the

thresholds, εisl and εcm, we pursue optimization of (4.12) and initialize with the design from

(4.13). If the solution from (4.13) does not satisfy the constraint requirements of (4.12), the

parameter, β, is incremented and/or the basis dimension, N , is increased until a feasible

solution is found or all the dimensions have been exhausted. In the latter case, no possible

solution is achievable and the constraints are too tight.

4.3 Numerical Solutions

No closed-form solution to (4.12) is possible due to the requirement the waveform be rep-

resented as a linear combination of eigenvectors. Therefore, we must pursue numerical

analysis to obtain the solution. We use the MATLAB optimization toolbox [110] to com-

pute the initialization (4.13) and the primary problem in (4.12).

3Due to the discrete values of β, the feasible dimension N is considered the best approximation, not a
guarantee of the minimum dimension.

66

Approved for public release; Distribution is unlimited.



Our experimental approach shows the effect of constraints on the dimension of the

waveform basis and SINR degradation via computer simulations. The simulations investi-

gate the combined constraints effect on the waveform basis with different emphasis given

to each constraint and, for given constraint thresholds, how SINR performance degrades

as the constraints are applied. Transmit and noise power are held constant (and unit-less)

throughout, and we report the mean values derived from the MC trials. In section 4.3.2 we

perform the simulations with a known covariance.

4.3.1 Simulation Process

1. Generate a random instantiation of the interference plus noise covariance matrix by

modeling an order-n AR process with random pole locations, thus giving a mix of

narrow and wide-band interference instantiations. This model has been used previ-

ously to study adaptive waveform design strategies [3].

2. Initialization: Cycle through emphasis (β), dimension (N ) and constraint thresholds

(εisl and εcm), first solving (4.13) to selection N . Begin with basis dimension of 1 and

increase until the constraints are satisfied (if possible), in (4.13).

3. If thresholds are reached, perform the constrained maximization for SINR perfor-

mance with the limited basis, in (4.12).

4. Record SINR and basis dimension for each constraint threshold set.

This process is outlined in Figure 4.2.

4.3.2 Known Covariance Matrix Results

For the optimizations where the interference and noise covariance matrix is assumed known,

the SINR was computed for the solutions of (4.12) and for the parameters in Table 4.1. We

use the highly correlated covariance matrix model, described in section 3.2.1, with P = 3
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Figure 4.2: Simulation process for a single Monte Carlo trial of the jointly constrained
waveform design SINR analysis.

to represent the noise and interference. The minimum basis dimension required to meet the

constraints was also retained for further study.

In Figure 4.3, the mean SINR is reported for the grid of constraints (εisl and εcm). On

Table 4.1: Parameters for SINR Degradation as Constraints are tightened

Parameter Value
Number MC Trials 10
Length Signal (M ) 16

AR Model Order (n) 3
ISL Resolution (εisl) 0.25
CM Resolution (εcm) 0.25

Simplex Resolution (β) 0.1
Training Data Support Known K
Numeric Scaling (γ) 10

the z-axis we view the average dependent variable, SINR in dB. The x-axis shows the val-

ues of the independent variable εisl where 0.0 represents no integrated sidelobes and 2M is

the unconstrained result. On the y-axis, the second independent variable εcm is incremented.

Here, γ represents constant modulus and γ + M represents the unconstrained design. As

the constraints are tightened on either axis we observe a monotonic decrease in the average

SINR. This information could be used to help select constraints given the need to put the

most energy on target.

Figure 4.4 reports the required minimum basis (N ) as the constraints are tightened.
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Figure 4.3: Average SINR degradation for constrained waveforms of length 16 code over
10 Monte Carlo trials for each eigenvector and AR process model order of 3.

Again, for the parameters in Table 4.1, the average minimum basis dimension is displayed

for the grid of constraints. On the z-axis, the minimum basis dimension, on the x-axis the

ISL threshold is varied and the y-axis varies the CM threshold. As expected, as we tighten

the constraints, additional dimensions of the sub-dominant noise subspace must be spanned

to achieve the design requirements. For a different perspective, the bird’s eye views of fig-

ures 4.3 and 4.4 are shown in figures 4.5 and 4.6, respectively.

Also included are Figures 4.7 and 4.8 that show, respectively, the measure of spread

in the distribution in the number of dimensions required for the CM and ISL constraints. It

is interesting to note that for both constraints, a small subset of the noise subspace eigen-
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vectors can achieve a large measure of favorable design characteristics.

4.4 Chapter Summary

In the previous sections, we devised a new algorithm for observing the SINR performance

response for constrained radar waveform design. We have shown a non-linear relationship

between the constraint threshold and the SINR performance degradation, from optimal.

Additionally, we have derived and implemented a new technique for waveform de-

sign that can be considered an implied SINR maximization by limited the basis dimen-

sion to the low noise subspace of the interference and noise covariance matrix. While

not advisable to run in an adaptive scenario due to the computational complexity of the

eigen-decomposition, it is highly instructive in giving intuition about the SINR perfor-

mance degradation.

We developed and simulated a new optimization formulation that varies the empha-

sis between the cumulative modulus and the integrated sidelobes. We included a practical

concern for numerical evaluation of the cost function with an added scaling term to ensure

equal dynamic range of both terms in the cost function.

The new results showing the nonlinearity of the SINR degradation have impact for

setting constraints thresholds in adaptive waveform design. For representative covariance

matrices, this algorithm can identify the SINR consequence to constraints on the waveform

design. Lastly, included in the Appendix, we have derived the proofs of non-convexity and

show that PAPR is an upper bound for CM.
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Chapter 5

Signal-to-Interference-Plus-Noise-Ratio

Analysis for Modulus Constrained

Radar Waveforms

To fully appreciate the benefits of arbitrary waveform design capability for transmit adap-

tive systems, the trade-space between constraints (employed to increase the measure of

practicality for radar) and the usual performance driver (signal-to-interference-plus-noise

ratio) needs to be better defined and understood. In this Chapter, we address this issue by

developing performance models for radar waveform design with cumulative modulus and

energy constraints1. Radar waveforms typically require a constant modulus (constant am-

plitude) transmit signal to efficiently exploit the available transmit power. However, recent

hardware advances and the capability for arbitrary (phase and amplitude) designed wave-

forms have forced a re-examination of this assumption in order to quantify the impact of

non-constant modulus designs. We develop performance models for the SINR as a function

of the cumulative modulus for a random colored interference environment and validate the

models against measured data.

1Preliminary results first published in [23] and final results in [29]
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Typically, radar waveform design techniques focus on maximizing the SINR [13–15]

while satisfying some practical constraint(s) quantified by a suitable measure (e.g., Doppler

tolerance, peak side-lobe ratio (PSLR) and/or integrated side-lobe ratio (ISLR), bandwidth,

energy, etc.). Success is claimed when the waveform achieves improved SINR, relative

to the current best technique. However, what is ignored, or not fully understood, is the

degradation in SINR, from optimal, when the constraint is allowed to be tightened or

loosened. Designing waveforms and enforcing constraints without this understanding is

a short-sighted approach for adaptive radar waveform design due to the nonlinear degra-

dation of the SINR performance for practical constraints [16]. As such, it is important

to develop relationships between waveform constraints and SINR performance. Adaptive

systems can then use performance models to make intelligent, responsive selection of the

transmit waveform based on the needs of the system [4, 19, 20, 125].

Constraints on waveform design are manifestations of the system and environmental

considerations. For example, the peak-to-average power ratio (PAPR), where unity would

be a constant modulus waveform, prevents a large power scaling due to the nonlinearity

of a radar systems power amplifier and simplifies recognition of the target distortion on

receive while also ensuring efficient use of dynamic range. Typically, a constant modulus

waveform design is used to prevent this power loss. In this Chapter, we relax this require-

ment to investigate the effect on SINR of non-constant modulus waveform designs with

finite energy.

In this innovative approach, it is our goal to devise straightforward performance mod-

els for achievable SINR as a function of the cumulative modulus constraint. Preliminary

results pertaining to the impact of non-constant modulus waveforms on SINR performance

were published in [16, 23].

The historical role of the amplitude constraint, first introduced in [62], explains the

practical needs for radar operation near power saturation, including maximizing the average

power output. Related literature exists for optimal waveform design including [54, 73, 74]
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where clutter suppression or similarity constraints had been the design metric. Waveform

design for PAPR constraints has been extensively investigated, including [64–66] where

the designs allowed for additional, more practical concerns such as sidelobes and finite en-

ergy. Phase-only waveforms have been studied, and we refer the reader to the following

and the references cited within [13, 18, 27, 32, 33, 41]. All of these designs leave at least

half the available degrees-of-freedom (DOF) unchanged, that is, optimized for efficient use

of power. This limits the overall capability of the waveform and inspires new formulations

to consider perturbing the modulus to observe performance degradation and the available

DOF for repurposing. Also, there remains a gap in the literature on the consequence to

SINR that imposing these design restrictions imply. This work helps alleviate some of the

uncertainty on SINR performance when constraints are applied on the waveform.

Finally, to effectuate the investigation and development of the performance models,

a structured approach to observing the degradation is used. Motivated by the well-known

optimal waveform design solution for SINR, the Rayleigh solution or the minimum eigen-

vector waveform, we implement a strategy where a sorted linear combination of the eigen-

vectors of the noise and interference covariance matrix comprises the waveform.

We formulate and solve multiple optimization problems that minimize the waveform

deviation from a constant modulus design. We then analyze the SINR performance loss,

from optimal, when modulus and energy constraints are applied to the waveform design.

Furthermore, we develop innovative performance models for SINR and waveform cumula-

tive modulus that can aid in the decision making process of what to transmit in an adaptive

system by understanding the consequences of the constraints imposed on the waveform

design. Lastly, we observe and report the performance response when compared against a

leading waveform design technique with a PAPR constraint.

The chapter is organized as follows. In Section 6.1 we discuss fundamentals and con-

cepts used to illustrate our work. Section 5.2 outlines the optimization problems to be

solved. Section 5.3 discusses the cumulative modulus and SINR performance models, re-
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spectively. In Section 5.4 we give empirical results derived from Monte Carlo computer

simulations. Finally, we state the conclusions and other observations of this work in Section

5.5 with the derivations in the Appendix, 9.3.

5.1 Preliminaries

In this section, we detail the components for the waveform and the data representation,

including waveform formulation, cost function, interference covariance matrix model, and

the eigenvalue distribution and estimation technique used to compute the expected SINR.

As first outlined in Chapter 4, optimizations of the quadratic form

min
s

sHKs, s. t. ‖s‖2
2 = 1, (5.1)

frequently appear in radar waveform design application but note, imposing additional con-

straints on the waveform construction is necessary to achieve a radar waveform suited for

practice.

5.1.1 Waveform Formulation Strategy

Again, for an eigen decomposition

K = VHΛV, (5.2)

where V = [v1 · · · vM ] and Λ = diag{λ1 · · ·λM} such that λ1 ≤ λ2 ≤ · · · ≤ λM , such

that maximizing SINR implies use of the smallest number of eigenvectors from the sub-

dominant noise subspace to represent the waveform. The waveform is thus represented

as

s =
N∑
k=1

αkvk, (5.3)
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where αk ∈ C1×1 is the kth eigenvector weight, and N ≤ M eigenvectors comprise the

support of s. While basis selection is non-unique, we intuitively grasp that as we apply

constraints on the waveform design, we are forced to span into the higher eigen-dimensions.

Quantifying the impact to SINR as a function of the constraints is the objective of this work.

5.1.2 Finite Energy Constraint and Cumulative Modulus Definition

As an obligatory requirement for practicality, a finite energy limit is placed on the wave-

form. This is the case in practice, and the squared L2 norm (‖s‖2
2 = 1) constraint, imposes

this restriction in our analysis. While the value can be chosen arbitrarily, we have set it

equal to unity without loss of generality and for mathematical convenience. It is worth

pointing out, for a constant modulus waveform, the energy constraint is redundant for fixed

code length. However, when the modulus is varied, it is necessary to impose the energy

constraint to readily observe consequence to SINR in the Monte Carlo analysis.

As fist seen in Chapter 4, the cumulative modulus, a new quantity, is used to describe

the total point-wise difference of each sample in the waveform from a normalized peak

amplitude, described mathematically as,

CM(s) =
M∑
l=1

[
1− |sl|2

]2
, (5.4)

= M − 2‖s‖2
2 +

M∑
l=1

|sl|4, (5.5)

where, for ‖s‖2
2 = 1, this quantity can be simplified to

CM(s) = M − 2 + ‖s‖4
4. (5.6)
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We recognize M − 2 is a nonnegative constant for waveform lengths M ≥ 2 that can be

omitted to give a simplified function,

Jcm(s) = ‖s‖4
4. (5.7)

Instructively, we claim minimization of the ‖s‖4
4 is analogous to minimizing the dis-

sipated or wasted energy in a constant supply voltage system. That is, as the design ap-

proaches a constant modulus waveform (i.e. PAPR= 1), the system can operate closer to

saturation, thus more efficient use of the finite energy supply. It is evident that the ‖·‖4
4 is an

alternative formulation to the more well-known PAPR constraint for waveform design. We

also note, with the ‖s‖2
2 = 1 imposition, the problem is evidently non-convex. Therefore,

we investigate (in the following section) a convex relaxation, for comparison.

We also observe an additional alternate formulation of the objective with a slight mod-

ification to (5.4), given as:

C̄M(s) =
M∑
l=1

[1− |sl|]
2 , (5.8)

= M − 2
M∑
l=1

|sl|+ ‖s‖2
2, (5.9)

= M + 1− 2
M∑
l=1

|sl|, (5.10)

where, after simplification and the assumption ‖s‖2
2 = 1, the objective would be maximiza-

tion on the L1 norm (‖s‖1) [126]. We give this as a possible new alternate definition but

only perform analysis using the objective in (5.7) to avoid confusion.
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5.1.3 SINR Expression as Function of Eigenvalues

The SINR of the output of a matched filter, with fixed energy constraint (‖s‖2
2 = 1), can be

expressed as a linear combination of weighted eigenvalues,

SINR =
1

sHKs
, (5.11)

=
1

(Vα)HVΛVH(Vα)
, (5.12)

=
1

αHΛα
, (5.13)

=
1∑N≤M

k=1 |αk|2λk
. (5.14)

For deterministic eigen-values, it becomes, then, a matter of the weights to compute

SINR, where, for example, the “best” SINR corresponds to α1 = 1 and all others as zero

(i.e., the Rayleigh solution). The “worst” performance would be inclusion of only the N th

eigenvalue while an average would put an equal weight on each of the N values. Evidence

of these observations are shown in the simulations.

5.2 CM Optimization Problems

In this section, we bring together the definitions of the waveform, objective function and

the covariance representation in a straightforward optimization problem (and its convex

relaxation) to minimize the CM with a finite energy constraint. Additionally, instead of

explicitly maximizing for SINR, we use the technique described in 5.1.1 to degrade SINR

and allow the objective function to focus on the cumulative modulus in (5.7). We represent

this as

min
α
‖s‖4

4, s. t. ‖s‖2
2 = 1, s =

N∑
k=1

αkvk (5.15)

where for arbitrary s the optimal solution is obvious, any constant modulus waveform.

However, the imposition that the waveform be comprised of an ordered subset of eigenvec-
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tors of the interference and noise covariance matrix muddles the solution. We point out,

due to selection of the reduced dimension basis for the waveform, it is expected that, on

average, a constant modulus design may not exist for all subsets.

The optimization problem in (5.15) is evidently non-convex and therefore, the solu-

tion may be highly dependent on the initialization and no guarantee of global optimality

may be made. Thus, we formulate, solve, and analyze the following convex relaxation of

(5.15) and give insights into the differences between the two:

min
A

vecH(A)
[ M∑
i=1

vec(V̂i)vecH(V̂i)
]
vec(A)

s.t. vecH(Idim(A))vec(A) = 1

(5.16)

where A = ααH , I is the identify matrix, V̂i = vHi vi and dim(A) = M . The matrix

A is necessarily positive semi-definite in order for (5.16) to be convex. The solution to

(5.16) will, most likely, yield a higher than rank-1 A matrix (hence the relaxation). Thus,

to compute the waveform that permits analysis of the SINR and cumulative modulus, we

extract the best rank-1 eigen-weights (αrelax) solution as defined by having the lowest cumu-

lative modulus waveform. We accomplish by performing an eigen-decomposition on the A

matrix and computing an exhaustive search of all possible waveforms with the prescribed

eigen-basis of the interference and noise covariance matrix KMP. This solution is then used

as part of the average for the relaxed formulation. The full derivation of the relaxation can

be found in the Appendix.

One could certainly perform waveform design using these algorithms (although not

advised due to computational burden of the eigen-decomposition), we, instead, use this as

a systematic approach to develop performance models for waveforms with a cumulative

modulus restriction. These models, then, could become a surrogate for waveform design

algorithms when knowledge of performance is required.
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5.3 Eigen-Basis Analysis Relating SINR & CM

The objective of the chapter is to understand and model the the outcome to (5.15) and the

corresponding SINR for a given basis dimension (N). We are challenged by the fact that

obtaining a closed-form representation for ‖s‖4
4 in terms of specific eigenvectors v corre-

sponding to a single instantiation of noise and interference is mathematically intractable,

as it calls for obtaining unique solutions to coupled cubic equations. Thus, the expected

value cannot be found analytically and we are forced to develop an empirical model that

represents the correspondence.

Our approach involves first computing the CM model as a function of N . Next, we

continue by developing the SINR model as a function N . Finally, we relate SINR and CM

in section 5.3.3. This connection allows interchangeability between SINR requirements

and CM thresholds settings.

5.3.1 Cumulative Modulus Performance Model

This section develops the model for the cumulative modulus as a function of the dimension

of the eigen-basis. Models, such as exponential, inverse power and circular have been

explored, but not with the same success as the Lamẽ curves (discussed next), and thus are

not depicted.

The Lamẽ curve is perhaps more familiarly known as a generalized super-ellipse of

the form: ∣∣∣x−Xc

a

∣∣∣p +
∣∣∣y − Y c

b

∣∣∣q = 1, (5.17)

where a, b are the minor and major axis (or semi-diameters), respectively, p, q are param-

eters to shape the ellipse, (Xc, Yc) denotes the ellipse center location. Note, for a curve

located at the origin and equal normalized axes, when the powers (p, q) are set to 2, (5.17)

reduces to the unit circle.

We seek to fit (5.17) to the expected cumulative modulus (E{‖s‖4
4}, the average so-
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lution to (5.15)) for a given eigen-basis dimension (N). We use a least-squares estimation

of the parameters p, q of the Lamẽ curve from the resulting solution of (5.15). We then

define parameters x, y to represent the number of eigenvectors used in the design and the

cumulative modulus quantity, respectively. Solving for y in terms of x gives the cumulative

modulus as a function of the eigen-basis dimension. The canonical form of the model of

cumulative modulus as a function of basis dimension is [127];

y(x) = b
q

√
1− (x−Xc)p

ap
+ Yc. (5.18)

We set a = 1
M

(minor axis). This is explained by noting the minimal solution will

yield a result of ‖s∗‖4
4 = 1

M
(i.e. constant modulus) and for N = 1, or the worst performing

waveform design, we achieve E{‖s1‖4
4} = 2

M
(coincidentally, this is also the expected

value of the 4th-moment of a complex Gaussian random vector with variance 1
M

) giving a

dynamic range of 1
M

. The major axis b is the number of eigenvectors required to achieve

the optimal. Given the design parameters have 2M complex degrees of freedom and the

modulus, or amplitude, describes only half the waveform (the other half being the phase),

we would expect to use only half our degrees of freedom to achieve constant modulus.

Therefore, only b = M
2

basis vectors would be required. This description is depicted in

Figure 5.1.

Substituting in (5.18), our parameters, the performance model for cumulative modulus as

a function of basis dimension is

CM ∼=
2

M
− 1

M
q

√
1−

(M
2
−N)p

(M
2
− 1)p

, (5.19)

N valid from 1 to M
2

. Or conversely, the dimension of the basis required when given a

modulus constraint

N ∼=
M

2
− p
√

1− (2−MCM)q(
M

2
− 1). (5.20)
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Figure 5.1: Description of waveform length dependent parameters of the Lamẽ model for
expected cumulative modulus as a function of the basis dimension N .

These models provide quick but rough insights into the behavior of the objective function

in (5.15).

5.3.2 SINR Performance Model

Next, we pursue development of a performance model for SINR degradation as the wave-

form basis is expanded for the MP covariance matrix definition. As outlined in Section

5.1.3, the SINR, for fixed energy, is 1∑N≤M
k=1 |αk|2λk

. Since the MP asymptotic distribution

allows computation of an eigen-spectrum for a large matrix, whose column dimension cor-

responds to waveform length, we consider the eigenvalues, λk to be deterministic, and have

modeled for the optimal weights α∗.

We define the magnitude function of the weights vector by a power law model, |ᾱN(k)| =
1√
k
. Power law models are used extensively in physics, biology and other sciences and are

attractive in this context due to its simplicity [128].
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These approximations allow us to write the SINRMP as:

SINRMP
∼=

1∑N≤M
k=1

∣∣ᾱN(k)
∣∣2Z(k)

, (5.21)

where Z(k) is the expected eigen-value vector with distribution described in (3.2). This

formulation gives a simple representation of the consequences to SINR as the constraint

tightens and forces a larger basis dimension [16].

5.3.3 SINR as function of CM

Connecting the CM model in (5.19) and the SINR model in (5.21) facilitates development

of a performance model for SINR as a function of the cumulative modulus constraint.

Using the approximation for the number of eigenvectors needed to meet a CM constraint,

seen in (5.20), we can connect the two models. This is computed as:

SINRMP(CM) ∼=
1∑bNc(CM)

k=1

∣∣ᾱN(k)
∣∣Z(k)

, (5.22)

where bNc(CM) is a function of the desired cumulative modulus as seen in (5.20). This

model can be employed to advise the waveform designer on the rough consequence to

SINR when applying an cumulative modulus constraint on the waveform design.

5.4 Numerical Illustrations

To validate the CM and SINR models, we use computer simulations to show the effect of

the waveform basis dimension on the modulus and SINR, from optimal. The covariance

matrix is assumed known in the optimization routines and the eigen-spectra are approxi-

mated with the MP distribution. We note, the MP model is the pessimistic assumption on

the covariance statistics. That is, if more information is available on the structure of the

covariance, you would necessarily incorporate into the analysis. We also hold transmit and
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Table 5.1: Lamẽ Model Parameters

Length pMP qMP

8 2.2409 1.8794
16 2.4470 2.1247
32 2.7647 2.1067
64 2.6494 2.1065

noise power constant (and unit-less) throughout, and we report the mean values derived

from the MC trials.

The MATLAB software package, including the Optimization Toolbox, [110] and CVX

(a package for specifying and solving convex programs) [129, 130] was used to generate

the data, figures and perform the optimization routines. Algorithm 1 describes the process

used to generate the numerical results for (5.15). In Table 5.1, we list values obtained for a

variety of waveform lengths and it is reasonable to assume that the theory scales for larger

length waveforms that are computationally prohibitive for large Monte Carlo analysis.

For our purposes, it is important to determine the degradation of SINR from optimal

as we include additional eigenvectors to minimize CM. It is appropriate to initialize with

the optimal waveform (eigenvector associated with minimum eigenvalue) and place no em-

phasis on other eigenvectors (e.g. α = [1 0N−1×1]), where N is the number of eigenvectors

used in the design.

As evidenced by considerable Monte Carlo analysis, (see Table 5.1) the model pa-

rameters are largely waveform length agnostic for the MP data model. We, therefore, only

display results for the M = 64 length waveform.

5.4.1 Simulation Results with MP Covariance Matrix Models

We numerically solve for (5.15) and (5.16) and compare the results against the models in

(5.19) and (5.21), respectively. The solution reported for the optimization in (5.16) is the

rank−1 solution of A that gives the lowest resulting L4 norm of the designed waveform.

86

Approved for public release; Distribution is unlimited.



Algorithm 1 Modulus and SINR Performance Simulation Pseudo-Code for (5.15)
1: for all k = 1:MC (Monte Carlo trials) do
2: procedure GENERATE SAMPLE COVARIANCE(M )
3: RawData = Cov{randn(M ) + irandn(M )}
4: Kmp = Normalize{RawData}
5: end procedure
6: procedure EIGENDECOMPOSITION(Data)
7: [V,Λ] = eig{Data} (K = VHΛV)
8: end procedure
9: for all k = 1 : M

2
(half Eigenvectors) do

10: Initialize: α
11: Split the complex coefficient: α = [Re(α); Im(α)]
12: Perform Optimization in (5.15)
13: Unsplit the complex: coefficient α∗

14: Compute waveform: s = Vα∗

15: Compute Modulus: ‖s‖4
4

16: Compute SINR: 1
sHKs

17: Data Log
18: end for
19: end for
20: Least-Square Regression Analysis
21: Compute CM Model
22: Compute SINR Model
23: Connect SINR to CM constraint
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This is the best case case scenario for this formulation. In Figure 5.2, the expectation of

‖ · ‖4
4 as a function of the basis dimension (N ) is reported for M = 64 and MC = 100.

The lower-bound is, of course, a constant modulus waveform, and for our energy constraint

would give ‖ · ‖4
4 = 1

M
. The data and Lamẽ model (overlaid), and shown only for the first

half of the basis (M
2

) as the average modulus achieves the lower-bound when using half the

DOF. For completeness, the maximum and minimum computed modulus is reported, we

see the dynamic range converges as the basis dimension increases.

We see in Figure 5.2, the relaxed optimization problem of (5.16) behaves predictably.

As the basis dimension increases, we initially observe improvement in the L4 norm of the

rank−1 solution waveform. However, as the optimization achieves the minimal value, i.e.

‖ · ‖4
4 = 1

M
(not shown, but occurs ≈ at 10 basis vectors in our example, on average) it

begins to spread the weights out evenly over the basis of A, thus, the best rank−1 solution

has less influence on the final waveform design in regards to the L4 norm. Consequently,

we observe the rank−1 solution reverting back to the unconstrained value.

In Figure 5.3, the normalized average SINR degradation, from optimal, is shown. The

exponential model in (5.21) is overlaid and showing good results for a highly simplified

model when compared against the solution of (5.15).

Using (5.19) and (5.21) in conjunction allow for SINR performance given a modulus

constraint on the waveform design. Or, given the basis dimension of the low-noise subspace

(i.e. avoiding the spectrum associated with clutter and interference) one could estimate

modulus performance and SINR degradation.

5.4.2 Simulation of the SINR as a function of CM

More important than the performance models that predict SINR as a function of the eigen-

basis is connecting the eigen-basis models of the SINR and CM results in a unified model

that gives the consequence to SINR as a function of the CM. We are able to perform com-

puter simulations to solve (5.15) and subsequently compute the output SINR for a given
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eigen-basis dimension. We can then associate the results, for a given eigen-basis dimension,

and compare against the model in (5.22), with results shown in Figure 5.4. For comparison,

we also compute and display the rank−1 solution waveform for the optimization in (9.45).

We observe that the model predicts the outcome, within several dB, of SINR for a
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Figure 5.4: SINR vs. CM model comparison against the resulting output SINR from (5.15).

given CM constraint value in (5.15). As noted earlier, the discrete Karhunen-Loève wave-

form generation technique is not optimized for SINR but uses the reduced basis dimension

to investigate the SINR performance. Also, the model does not reconcile for waveform

designs that more gradually degrade SINR and are not restricted to an integer numbers of

eigen-basis dimensions. Hence, we observe the quantization in SINR levels as the model

truncates to the dimension of the eigen-basis. While the convexity property of (5.16) does

guarantee global optimality, the rank−1 relaxation, in this case, gives severely misleading

results and suggests that certain CM levels are not possible and confounds the relationship

between SINR and CM.
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5.4.3 Simulation of Model vs. Leading Technique

In [63], several techniques are discussed for designing waveforms that maximize SINR

while applying PAPR and finite energy constraints for known and unknown normalized

Doppler cases. Here, we intend to compare our performance prediction model in (5.22) to

a similar problem for the known Doppler case in [63]. We begin to formulate our similar

problem by first stating:

min
s

sHKMPs, s. t. PAPR ≤ ε, ‖s‖2
2 = 1, (5.23)

where ε is the highest acceptable PAPR. We understand that minimizing PAPR is analogous

to minimizing the wasted energy in a fixed voltage environment and, thus, a comparable

problem employing the CM constraint can be stated in the following manner,

min
s

sHKMPs, s. t. CM ≤ εcm, ‖s‖2
2 = 1, (5.24)

where εcm is allowed to vary from 2
M

(unconstrained CM) to 1
M

(constant modulus or fully

constrained CM).

We numerically perform Monte Carlo analysis to solve (5.24) for multiple instanti-

ations of the interference and noise covariance matrix KMP. Although, here, we place no

imposition that the waveform be comprised of a subset of the eigen-basis thus allowing to

search over the entire vector space. In Figure 5.5, we compare the results of the analysis of

(5.24) and compare against the model in (5.22). The strong relationship between trends in

Figure (7) validates the approach to use and eigen-decomposition technique to formulate

the SINR/CM relationship model. The model provides estimation of the degradation to

SINR, to within a few dB, when the modulus is constrained.
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5.5 Chapter Summary

As was the intent, we have devised a novel technique to develop performance models for

constrained radar waveforms. Additionally, we have investigated, developed and analyzed

empirical models for a balanced class of interference (MP). This had led to several new

performance models that accurately approximate the outcome in (5.24) as seen in the liter-

ature.

As fully adaptive radar systems become more prevalent, the ability to estimate trans-

mit performance and make decisions quickly and accurately increases in importance. This

work showcases some of the challenges inherent with performance estimation (i.e. analyti-

cal intractability’s, data model inaccuracies), but also shows straightforward equations can

be used to represent high dimensional problems.

It is important to note that the waveform design can obtain a low cumulative mod-

ulus (near unity) with a very limited basis, on average, implying that use of the smaller

92

Approved for public release; Distribution is unlimited.



basis could limit the search space when performing the optimization, thus saving compu-

tation time. It is also important for the waveform designer to consider the nonlinearity of

the SINR when selecting the constraint level. For example, relaxing the constant modulus

requirement might enable additional degrees of freedom to minimize the waveform range

side-lobes.

The models developed give a first-order approximation of the eigen-basis dimension

(i.e. the approximate minimum number of eigenvectors) required to achieve a certain wave-

form cumulative modulus and the corollary SINR degradation, from optimal. Understand-

ing these performance trades enables a more efficient decision making process for an adap-

tive system.
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Chapter 6

Subspace Approach to Performance

Analysis for Range-Sidelobe Suppressed

Waveforms

Another important concern in constrained radar waveform design is understanding the con-

sequence on SINR performance when sidelobe constraints are required1. In this Chapter,

we derive new analytical models for the expected integrated sidelobe as a function of the

dimension of the eigen-basis. We approach understanding the consequence of the ISL con-

straint from the perspective of the constraint rather than SINR to provide new insights into

the behavior of the constraint on SINR. We then examine the performance for two unique

interference and noise scenarios and connect the ISL to SINR forming simple performance

models. Finally, we give Monte Carlo simulation analysis and compare our approach to a

leading waveform design technique from the perspective of SINR maximization and con-

clude the proposed approach can provide comparable performance prediction with addi-

tional insights into the relationship between constraint and SINR2.

1Portions of this work initially featured in; A.M.Jones, B.D.Rigling, and M.Rangaswamy,Performance
models for sidelobe constrained signal design with eigen-basis formulation, in Proceedings of the 2015 IEEE
Radar Conference, May 2015

2Portions of this work are under review with the IET Journal of Radar, Sonar and Navigation
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As a signal design criteria, the integrated sidelobe has been studied in great depth

[3, 30–34] and we note its important role in multiple radar functions, including reducing

the number of false alarms, improving multiple target resolution and efficient spreading

of the energy contained within the signal. The literature mentions many design method-

ologies for limiting sidelobe levels, including; periodic autocorrelation function technique

possessing a zero sidelobes attribute [37], and similarly a cyclic technique, PeCAN [14,34]

or a competing technique Signal Waveform’s Optimal Under Restriction Design for Active

Sensing (SWORD) [15], among others. However, the progressive consequence to SINR as

the design drives down the sidelobes has not been studied.

The motivation for this work is to gain a greater understanding of how constraints

affect SINR performance in order to improve the decision making process of an adap-

tive system. For example, when the number of design degrees of freedom are finite, one

might sacrifice peak-to-average-power for ISL performance in a high SINR environment

to resolve near-in targets. Conversely, the most efficient use of power might be necessary,

limiting the degrees of freedom for ISL performance.

This Chapter gives insight into the behavior of the trade-space between the competing

signal traits of SINR and ISL levels for two subspace perspectives and develops perfor-

mance models [131] to aid in the selection process of what to transmit. Others have inves-

tigated performance models for similar metrics, integrated sidelobe ratio (ISLR) and peak-

sidelobe ratio but limited the data models of noise and interference modeled to Bernoulli

distributions [35, 36].

The remained of the Chapter is organized as follows. We develop the signal model

and define preliminaries in section 6.1. This includes formulation of new optimization

problems that are ISL centric rather than the typical SINR centric formulations found in

the literature. Also, we define an interference and noise covariance matrix model, validated

with measured data, to evaluate performance in a manner that provides a convenient closed-

form expression for the expected eigen-values. Next, in section 6.2, we derive an analytical
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expression for the expected ISL as a function of the waveform parameters. Following in

section 6.3, we develop the corresponding SINR model. We validate the theoretical models

via simulation in section 6.4 and compare our novel approach to the leading SINR centric

ISL optimization problem. The conclusions and additional insights are given in the chapter

summary 6.5.

6.1 Preliminaries and Problem Formulation

As a quick review, to elucidate the difference between SINR centric and ISL centric opti-

mization problems, and inspire our approach to developing performance models, we con-

sider the signal model first outlined in Chapter 4.

Then, for the ISL centric optimization problem, we begin with the auto-correlation

sequence rm =
∑M

q=1 sms∗m−q, where m is the lag. We then define the integrated sidelobe

as

JISL =
M−1∑
m=1

∣∣∣ M∑
q=1

sms∗m−q
∣∣∣2 (6.1)

s ∈ CM×1 where we exploit symmetry and assume a main lobe width of 1, a reasonable

simplification in most cases. We compact this notation using Em ∈ RM×M , a zero-matrix

with 1’s on themth upper super-diagonal. For example, whenm = 1, we have the following

E1 =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

0 0 0 · · · 0


(6.2)
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giving JISL =
∑M−1

m=1 |sHEms|2. Also, to provide an implicit maximization of SINR, we

express the designed waveform as a linear combination of an ordered subset of the eigen-

vectors of the interference and noise covariance matrix (K). For an Eigenvector decompo-

sition

K = VHΛV (6.3)

where V = [v1 · · · vM ] and Λ = diag{λ1 · · ·λM} such that λ1 ≤ λ2 ≤ · · · ≤ λM , max-

imizing SINR implies use of the smallest number of eigenvectors from the sub-dominant

subspace to represent the signal. This approach is intended to provide an intuitive inves-

tigation of the SINR degradation, not to be an efficient waveform design technique. The

waveform is thus represented as an eigenvector reconstruction of the form

s =
N∑
n=1

αnvn (6.4)

where αn ∈ C1×1 is the nth eigenvector weight, and N ≤ M eigenvectors comprise the

support of s. Formally, a discrete Karhunen-Loève expansion [28], we see this technique

first employed for radar in [5,124] (described as the Generalized Matched Subspace Projec-

tion approach), where the invention allows gradual modification of the waveform between

competing properties: maximizing SINR and the pulse compression characteristics of the

waveform. SINR is then defined as:

SINR =
1

sHKs
(6.5)

=
1

(Vα)HVΛVH(Vα)
(6.6)

=
1

αHΛα
(6.7)

=
1∑N≤M

n=1 |αn|2λn
. (6.8)

Using (6.2) and (6.4) allows us to succinctly form an optimization problem to mini-
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mize sidelobes subject to a finite energy constraint and eigen-basis dimension restriction

as

min
α

M−1∑
m=1

|sHEms|2, s. t. ‖s‖2
2 = 1 (6.9)

s =
N∑
n=1

αnvn (6.10)

which we define as the ISL centric approach. We note, (6.9) does not explicitly maximize

for SINR, which can instead be maximized by choosing a minimal N . As shown in the

Appendix, the objective function is non-convex (hence, no guarantee of optimality). Also,

in the Appendix is a convex relation formulation (with analysis) which provides motivation

for use of the non-convex optimization problem.

For the SINR centric approach, where the objective function is seen in the denominator

of (6.5), we maximize the SINR while applying the additional ISL constraint, denoted εISL.

The SINR centric design approach is defined as

min
s

sHKs, s. t. ‖s‖2
2 = 1 (6.11)

JISL ≤ εISL (6.12)

without the restriction on the waveform that it be composed of an ordered subset of the

eigenvectors of the interference and noise covariance matrix. It is well known that the un-

constrained objective function in (6.11) is easily solved (for arbitrary s) using the Lagrange

method [121] where the optimum is the minimum eigenvector solution waveform seen also

in [122, 123]. A major focus of this Chapter is to develop performance models and un-

derstand the outcome of (6.11), (considered the leading SINR centric approach) as the ISL

constraint is tightened. We will compare the results from each approach in (6.9) and (6.11),

respectively in section 6.4.

Finally, to model the impact of ISL on SINR performance, we discuss a random inter-
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ference environment having general utility that is useful in the situation where no a priori

information about the interference and noise is available. We compare the eigen-spectrum

of the model to measured data and show the model is appropriate for this type of analysis.

The covariance data representation is an asymptotic result reported in random matrix

theory literature [104] denoted as Marčenko-Pastur (MP), and defined

KMP =
1

M
ZZH (6.13)

where elements Zij are CN(0, σI) [132]. Please refer to Chapter 3 for in-depth discussions

on data models.

6.2 Expected Integrated Sidelobe Performance Model for

Gaussian Eigen-vector Model

In this section, we derive an expectation model for ISL as a function of the basis dimen-

sion (N ) of the waveform design, detailed in (6.4). It is our goal to develop and analyze

the SINR performance as the waveform ISL is suppressed. However, since no claims on

the distribution of the elements in eigenvectors for either covariance matrix model can be

made, that we are aware of, we will assume a Gaussian model (i.e. the waveform itself

can be represented as a random variable) and derive an expected value of ISL, defined in

(6.1), under these pretenses. We do so as a function of the signal length (M), eigen-basis

dimension (N), and the weights vector (α). This gives us a model for the output of the

optimization in (6.9) and helps in obtaining a model for SINR as a function of the ISL

constraint in the sections to follow.
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Starting with the definition of ISL in (6.9), the expected ISL can be derived as

E{ISL}(M,N,V, α) = E
{M−1∑
m=1

|sHEms|2
}

(6.14)

= E
{M−1∑
m=1

(sHEms)(sHEt
ms)
}

(6.15)

= E

{
M−1∑
m=1

( N∑
i=1

αHi vHi Em

N∑
j=1

αjvj
)( N∑

k=1

αHk vHk Et
m

N∑
l=1

αlvl
)}

(6.16)

=
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

αHi αjα
H
k αl

M−1∑
m=1

E
{

vHi Emvjv
H
k Et

mvl
}

(6.17)

where, to evaluate the expectation, we describe the elements (p) of each eigen-vector (v) as

a random variable vp,i ∼ CN(0, 1
M

)∀ p, (i, j, k, l) whose entries are independent and iden-

tically distributed. We note E
{

vHi Emvjv
H
k Et

mvl
}

is the partial ACS of a complex Gaussian

sequence. Using dummy variables, a, b, c, d ∼ CN(0, 1
M

), we see three unique terms

develop from the evaluation of E
{

vHi Emvjv
H
k Et

mvl
}

, pairs of squares (eg. E{a2}E{b2}),

single square (eg. E{a}E{b2}E{c}) or quartic (e.g. E{a}E{b}E{c}E{d}). The single

square and quartic terms evaluate to zero leaving only the pairs of squares terms. It is

straightforward, but tedious and thus not shown, to show that (M −m) number of pairs of

squared terms exists and only when i = j = k = l, otherwise all other terms average to

zero. Thus, E{a2}E{b2} = σ4 giving

E
{

vHi Emvjv
H
k Et

mvl
}

= σ4(M −m). (6.18)
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Then,
∑M−1

m=1 E
{

vHi Emvjv
H
k Et

mvl
}

= σ4
∑M−1

m=1 (M−m), where
∑M−1

m=1 (M−m) = M2

2
−

M
2

. This implies

σ4

M−1∑
m=1

(M −m) =
1

M2

(M2

2
− M

2

)
(6.19)

=
1

2
− 1

2M
, (6.20)

which approaches 1
2

for large M (reasonably defined as M ≥ 32) and σ = 1√
M

. Thus, we

conveniently write,

E{ISL}(M,N,α) =
1

2

N∑
i=1

|αi|4 −
|αi|
M

. (6.21)

where ‖α‖2
2 = 1. It becomes, then, a matter of the weight selection to predict ISL perfor-

mance as a function of the eigen-basis dimension. We approach the modeling of the weights

from an intuitive perspective, which is by designing the PSD to be as flat as possible for

a given Eigen-basis dimension. The eigenvalues are an approximation of the PSD [114],

thus to flatten the PSD, the reciprocal of the Marcenko-Pastur distributed eigen-values is

appropriate for the weighting.

Shown in Figure 6.1 is the MP eigen-spectrum as well as sample eigen-spectrum from

25 random instantiations for M = 256. Additionally, we compare the eigen-spectrum

of the MP model against measured data of the same size covariance. The measured data

is interference and noise data collected with system parameters listed in Table 6.1 for an

air-to-ground radar operating at X-band. The standardized eigen-values on a log scale are

shown against the theoretical model. We will use the eigen-value models to develop the

performance models and validate against the measured data set.

The inverse weights model is then

αinverse =
1

λ̂
. (6.22)
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Table 6.1: Interference and Noise Measurement Specifications

Parameter Value
Bandwidth 1 GHz

Minimum Frequency 9.2 GHz
Maximum Frequency 10.2 MHz

Pulses 256
Fast-time Samples 256

Sample Rate 3 GHz
Number Channels 1
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Figure 6.1: Eigen-spectrum comparison of theoretical Marčenko-Pastur (3.2), sample co-
variance eigen-spectrums generated from 25 random instantiations of (6.13), and eigen-
spectrum of measured data with collection specifics in Table 6.1 for M = 256, for compar-
ison.

where λ̂ are the N sorted eigen-values of the interference and noise covariance matrix. The

expected ISL becomes

E{ISL}(M,N, λ̂) =
1

2

N∑
i=1

1

|λ̂i|4
− 1

M |λ̂i|
. (6.23)

where ‖λ̂‖2
2 = 1. For M = 64 we have simulated the E{ISL} and is shown in Figure 6.2.
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Figure 6.2: Performance model of the expected integrated sidelobe as a function of the basis
dimension of the waveform as described in (6.23) when the MP distributed eigenvalues are
employed.

6.3 Expected SINR Performance Model

The SINR model as a function of the eigen-basis dimension used to comprise the support

of the waveform follows in a straightforward manner. For deterministic eigen-values, it

becomes, then, a matter of the weights to compute SINR, where for example, the “best”

SINR corresponds to α1 = 1 and all others as zero (i.e., the Rayleigh solution). The “worst”

performance would be inclusion of only the N th eigenvalue while an “average” would put

an equal weight on each of theN values. Thus, using (6.5), we know SINR = 1∑N≤M
n=1 |αn|2λn

and for our interference and noise covariance model in (6.13), whose eigen-values are MP
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distributed, we let α = αinverse and are able to write the SINR model as

E{SINR}(N, λ̂, αinverse) =
1∑N

n=1 |αinverse,n|2λ̂n
(6.24)

=
1∑N

n=1
1

λ̂n

(6.25)

where for M = 64 we have plotted the curve defined in (6.24) in figure 6.3. This in-

tuitive representation suggests, that for the ISL constraint and the inverse weights vector

(αinverse), that SINR is linearly dependent on the number of basis-vectors (for large M this

is analogous to the bandwidth or number of frequencies used in the waveform design).
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Figure 6.3: Performance model of the expected SINR as a function of the basis dimension
of the waveform as described in (6.24) when the MP distributed eigenvalues are employed.
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6.4 Simulation Results and Comparison to Measured Data

In this section, we use Monte Carlo simulation analysis and measured data to validate the

performance models developed in sections 6.2 and 6.3. For M = 64 length waveform and

the interference and noise covariance matrix model defined in (6.13), we perform 25 Monte

Carlo simulations using different realizations of KMP and solve the optimization in (6.9)

incrementing through the entire eigen-basis dimension. We also use the covariance matrix

estimated from measured data (described in section 6.1 and table 6.1) also for M = 64

length signal and incremented through the entire eigen-basis dimension. The results are

compared to the models in (6.23) and (6.25) for the computed ISL and SINR as a function

of the eigen-basis dimension for both the Monte Carlo analysis and measured data. The

results are shown, in Figures 6.4 and 6.5, respectively. The simulation algorithm is shown

in Algorithm 1.

In Figure 6.4, we show the performance model as a function of the eigen-basis to be a

good representation for both the Monte Carlo simulation trials and the measured data set,

suggesting the Gaussian model for the eigen-vectors to be reasonable. Additionally, we ob-

serve the limitation in the model for large basis dimension when the signal length is finite,

that is, we see the model diverge from the solution to (6.9). However, as the signal length

increases, the model will drive the expected ISL closer to zero sidelobe level, reducing this

error.

We compare the SINR model to the Monte Carlo trials and measured data set in Fig-

ure 6.5. We observe remarkable accuracy in our ability to predict SINR degradation as a

function of the eigen-basis used in the support of s. This confirms the expectation that, for

the ISL constraint, the primary driver to reduce sidelobe levels is simply the inclusion of

additional frequencies (or in this case, a larger basis dimension).

Lastly, we complete the performance model analysis by connecting the ISL model

in (6.23) to the SINR model in (6.24). We also compare the outcome of the optimization

in (6.11) and for the SINR centric approach when the measured data is used to estimate the
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Figure 6.4: Comparison of ISL model in (6.23) as a function of the eigen-basis dimension
to the outcome of (6.9) when Monte Carlo simulation trials (with covariance KMP) and the
covariance from measured data set are used.
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Figure 6.5: Comparison of SINR model in (6.24) as a function of the eigen-basis dimension
to the outcome of (6.9) when Monte Carlo simulation trials (with covariance KMP) and the
covariance from measured data set are used.
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Algorithm 2 ISL and SINR Performance Simulation Pseudo-Code
1: for all k = 1:MC (Monte Carlo trials) do
2: procedure GENERATE SAMPLE COVARIANCE(M )
3: RawData = Cov{randn(M ) + irandn(M )}
4: KMP = Normalise{RawData}
5: end procedure
6: procedure EIGENDECOMPOSITION(Data)
7: [V,Λ] = eig{DataMP} (KMP = VHΛV)
8: end procedure
9: for all k = 1 : M (all basis vectors) do

10: Initialise: α
11: Perform Optimisation in (6.9)
12: Compute waveform: s = Vα∗

13: Compute ISL: JISL =
∑M−1

m=1 |sHEms|2
14: Compute SINR: 1

sHKs
15: Data Log
16: end for
17: end for

covariance. In Figure 6.7, we show the model is able to predict, within a reasonable error,

the SINR degradation as a function of the ISL.

Lastly, we complete the performance model analysis by connecting the ISL model in

(6.23) to the SINR model in (6.24). We also compare the outcome of the optimization in

(6.11) and for the SINR centric approach when the measured data is used to estimate the

covariance. In figure 6.7 we show the model is able to predict, within a reasonable number

of db, the SINR degradation as a function of the ISL.

6.5 Chapter Summary

The transmit signal ISL level affects many of a radar systems core functions and the ability

to understand how it affects the SINR will drive an adaptive system to place the DOF where

they are most valuable. For example, in resolving targets vs. improving signal strength. In

this Chapter, we have developed two novel performance models, expected ISL and ex-

pected SINR, both as a function of the eigen-basis dimension used to comprise the support
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Figure 6.6: Normalized SINR degradation, relative to optimal, as a function of the ISL
constraint on the waveform design.
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Figure 6.7: Normalised SINR degradation, relative to optimal, as a function of the ISL
constraint on the waveform design.
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of s. The models perform well and allow a rough expectation to the SINR degradation as a

function of the ISL constraint in radar waveform design.

Performance prediction models could potentially become a surrogate for computa-

tional expensive waveform design algorithms in an adaptive radar scenario. Future work

calls for higher-order development of performance models for waveform design.

109

Approved for public release; Distribution is unlimited.



Chapter 7

Future Work

We briefly discuss four possible directions for future work. In section 7.1, we encourage

additional data models be developed. Section 7.2 briefly mentions how one could incorpo-

rate additional constraints on the waveform. In this dissertation, we deliberately observed

the response from the transmit waveform only; however, in a truly adaptive system one

must consider the receiver design as well. This is motivated in section 7.3. Lastly, we

prompt additional practicality by incorporating measured data in section 7.4.

7.1 Data Model Development

In this dissertation, we developed a new approach to generate synthetic data that has been

analyzed and validated against measured data. Future work will necessarily involve the de-

velopment of additional synthetic data models that accurately portray the signal types and

phenomenology for all RF bands of interest and locations. It is conceivable to take a similar

approach but also incorporate additional features. This may complicate the modeling but

give further improved realism.

In figure 7.1, we suggest a possible beginning to the next version of synthetic data

generation at the UHF band. This is the constructive approach to forming realistic inter-

ference and noise covariance matrices to then analyze the impact to SINR performance in
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adaptive radar waveform design.
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Figure 7.1: Potential constructive approach to generation of synthetic PSD realizations

7.2 SINR Analysis for Additional Constraints

One might also study the consequence to SINR, as we have, for additional practical con-

straints or concerns. For example, a similarity constraint against a waveform with desirable

properties. In this case SINR generally improves as the similarity is relaxed (instead of de-

grades as investigated in this dissertation). The question then becomes, how much SINR

retrieval ifs possible while achieving a suitable similarity. Second, some have mentioned

Doppler tolerant waveforms as a possible design metric to overcome DSP complications

in simple system architectures. Here, requiring waveform to possess these characteristics

with, invariable degrade SINR. It is possible then, to answer, what is the cost of the Doppler

tolerance characteristic.
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7.3 SINR Analysis for Joint Transmit / Receive Filter De-

sign

Adaptive radar implies closing the loop on the radar cycle via joint TX/RX adaptation.

While this dissertation intentionally focused on the transmit aspect to better understand the

role the constraints play in the SINR degradation. It is an obvious next step to fold in the

receive filter with constraints such as the Capon constraint. The logical questions is, what

is the SINR cost of additional constraints on the receive filter? And, can they be modeled

or prediction to aid in the decision making process of an adaptive radar?

7.4 Validation Through Experimentation

While the synthetic model developed in this dissertation was derived from measured data,

one should undertake additional experimentation to validate the performance model al-

gorithms. This might include set-up of laboratory experiments with arbitrary waveform

design control with matched filter receiver and known colored interference environment

where the SINR can be captured as the constraint is varied.

7.5 Metric Definition

As mentioned previously, comparison of the synthetic PSD models was a challenge. We

showed a strong statistical similarity for Model 1. to the measured data, but clearly ob-

served that is was a poor physical representation. However, Model 2. was clearly similar

in its physical attributes, but the measures used, (Kullback-Leibler, Chi-Square Test and the

trace of the covariance) showed worse performance, statistically speaking, than Model 1.

One could an envision development of a metric (or process) that can capture the salient fea-

tures of the desirable PSD and thus a mechanism to compare one synthetic PSD generation

technique to another as compared to measured data.
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Chapter 8

Closing Remarks

In this chapter, we provide a summary of the unique contributions and our final thoughts

on research in this area.

First, we defined and developed new interference and noise data models. We use the

low model AR data model to give a comparison to what is currently in the literature. We

then extended to radar a familiar result in the RMT literature on the asymptotic CDF of

the eigenvalues for a certain type of covariance matrix. Finally, we developed an easy-to-

compute practical model for the interference and noise PSD for the UHF band in North

America. This allows generation of realistic covariance matrices and thus once can make

insightful decision on the impact constraints have on SINR.

Next, we developed the role of the eigen-basis dimension required to achieve practical

constraint thresholds for radar waveforms. We defined new, simplified expressions for the

waveform cumulative modulus and range sidelobes. Next, we developed an original ini-

tialization scheme to select the approximate minimum basis dimension required to achieve

practical constraint thresholds. This initial design was then employed in a constrained max-

imization of the SINR. This work illustrated the nonlinearity of the SINR performance to

the constraint thresholds and gave a new algorithm for others to investigate the performance

for different interference classes.
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We then focused our attention on development of innovative performance models for

the CM as a function of the eigen-basis. We defined and motivated a novel, straight for-

ward model via a Lamẽ curve and used a least-squares regression technique to compute

the curve parameters for a given length and interference class. Following, we developed a

innovative performance prediction model for the SINR as a function of the CM constraint.

We formulated the model using approximate eigen-values and a power law model on the

weights of the eigen-values and compared the results for three unique interference classes.

Lastly, we used a subspace approach to develop performance prediction models for

range-sidelobe suppressed waveforms. In this work, we developed two novel models. One

for each, the ISL as a function of the basis-dimension of the waveform and SINR as a

function of the basis-dimension of the waveform. We showed, for a particular covariance

model the non-linear degradation and develop accurate performance prediction models to

use as surrogates for waveform design. We validated the models with Monte Carlo com-

puter simulations and through measured data.

Of the many important observations, the most significant would have to be the non-

linear relationship to SINR as we apply the constraints. We observed for both the cu-

mulative modulus and the ISL that achieving a high degree of either constraint, came at

significant cost to the SINR performance. This suggests that perhaps waveform designers

may be better suited to relax very stringent sidelobe or modulus requirements for the ben-

efit of SINR.

Performance prediction for adaptive radar waveform design, using the subspace ap-

proach to investigate the impact to SINR as the constraints are tightened, has been shown to

provide new insights to enable smarter decision making for an adaptive radar. It is clear that

adaptation will become mandatory for future fielded radar systems and understanding these

consequences, and predicting them in certain scenarios, will provide a tactical advantage

over static, or non-knowledge aided processing schemes.
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Chapter 9

Appendices

9.1 Appendices from Chapter 3

Synthetic RFI Generation Technique

1 function [PSD] = ...

Synthetic_UHF_RFI(M,alpha_n,beta_n,gamma_n,P,S_init,a,b,min_mu,max_mu)

2 % [PSD] = ...

Synthetic_UHF_RFI(M,alpha_n,beta_n,gamma_n,P,S_init,a,b,min_mu,max_mu)

3 % returns a vector of randomly distributed values using the gamma

4 % distribution and a Markov sequence of length M.

5 %

6 % ver 1.0, 5/01/2016

7 % Code POC: Aaron M Jones, AFRL / RYAP aaron.jones.41@us.af.mil

8 %

9 % Example using Model 2 from RadarCon 2016 Paper:

10 %

11 % [PSD] = Synthetic_UHF_RFI(1266,3.1075,1.9617e-10,2.6278e-09, ...

12 % [0.9944 0.0056; 0.0296 0.9704],[0.5 0.5], 1.5634 , 8.5887, ...

13 % 2.2151e-08, 3.5018e-07);

14 % figure(1); plot(10*log10(PSD)); axis('tight');
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15 % title('\bfSynthetic RFI');xlabel('Frequency Bin');ylabel('PSD ...

(dBm)');

16 %

17 % INPUT Definitions:

18 % M = = length of sequence

19 % alpha_n = noise distribution shape parameter

20 % beta_n = noise distribution scale parameter

21 % gamma_n = noise distribution shift parameter (dBm)

22 % P = Markov sequence transition matrix (2 state only)

23 % S_init = initial state vector

24 % a = minimum signal distribution shape parameter

25 % b = maximum signal distribtuion shape parameter

26 % min_mu = minimum of signal amplitude range

27 % max_mu = maximum of signal amplitude range

28 %

29 % OUTPUT Definitions:

30 % PSD = output power spectral density (dBm/frequency bin)

31 %

32 % If you are you using this script in research work to be published,

33 % please include explicit mention of our work in your publication.

34 %

35 % We suggest language such as this:

36 %

37 % "To model the interference and noise in problem (12), we used the

38 % computationally efficient method described in [1]."

39 %

40 % with the following corresponding entry in your bibliography:

41 %

42 % [2] Aaron Jones and Brian Rigling and Muralidhar Rangaswamy. ...

"Generation

43 % of Synthetic UHF RFI in Urban North American Environments", ...

IEEE Radar

44 % Conference, Philadelphia, PA, May 2016.
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45

46 % References:

47 % [1] H. Zhou, B. Wen, and W. S, Dense radio frequency interference

48 % suppression in hf radars, IEEE Signal Processing Letters, ...

vol. 12,

49 % pp. 361 364 , May 2005.

50 % [2] G. Scalzi, Afrl sensors directorate rf range measurement ...

capabilities.

51 % Presentation, October 2014.

52 % [3] S. Frost, Markov chain spectrum representations for ...

sidelobe prediction.

53 % Personal Correspondence, 2015.

54 % [4] L. Patton, S. Frost, and B. Rigling, Efficient design of ...

radar waveforms

55 % for optimised detection in coloured noise, IET Radar, Sonar and

56 % Navigation, vol. 6, no. 1, pp. 22 29 , 2012.

57 % [5] L. Patton and B. D. Rigling, Autocorrelation constraints ...

in radar

58 % waveform optimization for detection, IEEE Trans. Aerospace and

59 % Electronic Systems, vol. 48, pp. 951 968 , April 2012.

60 % [6] J. Li, J. Guerci, and L. Xu, Signal waveforms optimal ...

under restriction

61 % design for active sensing, in Sensor Array and Multichannel ...

Processing,

62 % 2006. Fourth IEEE Workshop on, pp. 382 386 , 2006.

63 % [7] J. Proakis, Digital Communications. McGraw-Hill, 3rd ed., ...

March 1994.

64 % [8] M. Wax and Kailath, Detection of signals by information ...

theoretic

65 % criteria, IEEE Transactions Acoust. Speech Signal ...

Processing, vol. 33,

66 % pp. 387 392 , April 1985.

67 % [9] T. K. Moon and W. C. Stirling, Mathematical methods and ...
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algorithms

68 % for signal processing, vol. 1. New York: Prentice Hall, 2000.

69 % [10] D. Messerschmitt, Autocorrelation matrix eigenvalues and ...

the power

70 % spectrum, Tech. Rep. UCB/EECS-2006-90, EECS Department, ...

University

71 % of California, Berkeley, June 2006.

72 % [11] K. Sunggon, J. Lee, and D. Sung, A shifted gamma distribution

73 % model for long-range dependent internet traffic, IEEE ...

Communications

74 % Letters, vol. 7, pp. 124 126 , March 2003.

75 % [12] K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection,

76 % Estimation and Data Analysis. New York: John Wiley and Sons, ...

1 ed.,

77 % 1988.

78 % [13] MATLAB, Version 7.14.0.739 (2013b). The MathWorks Inc., 2012.

79 % [14] T. Cover and J. Thomas, Elements of Information Theory. ...

Wiley, 2nd ed.,

80 % 200.

81

82 % Copyright 2016, Aaron M. Jones, Brian D. Rigling, Murali ...

Rangaswamy

83

84 % test

85 if nargin < 1

86 disp('Running RadarCon 2016 Example');

87

88 M = 1266; alpha_n = 3.1075; beta_n = 1.9617e-10; gamma_n = ...

2.6278e-09;

89 P = [0.9944 0.0056; 0.0296 0.9704]; S_init =- [0.5 0.5]; a = ...

1.5634;

90 b = 8.5887; min_mu = 2.2151e-08; max_mu =3.5018e-07;

91
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92 end

93

94 %% preallcoate

95 x = zeros(1,M);

96 xx = zeros(1,M);

97 PSD = 0.*ones(1,M);

98 signal_dist_total = [];

99 length_band = zeros(M,1);

100

101 %% initialize

102 x(1) = rando(S_init); % initial state of markov ...

sequence

103 amp = 10.ˆ(log10(min_mu) + ...

(log10(max_mu)-log10(min_mu)) * rand(1,1)); % amplitude of ...

first signal band

104 total_bands = 0; % signal band counter (# of signal bands)

105 trigger = 0; % flag

106 idx_xx = 0; % index counter

107 signal_dist = 0; % signal distribution

108

109 %% set output of initial state

110 if(x(1) == 1); xx(1) = 0; end % noise state

111

112 if(x(1) == 2); % signal state

113 xx(1) = amp;

114 total_bands = 1;

115 length_band(1) = 1;

116 end;

117

118 %% generate Markov sequence with different signal band amplitudes

119 for i=1:M-1

120

121 x(i+1) = rando(P(x(i),:)); % equation
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122

123 % set signal band amplitude

124 if(x(i) == 1 && x(i+1) == 2 && trigger == 0)

125 amp = 10.ˆ(log10(min_mu) + ...

(log10(max_mu)-log10(min_mu)) * rand(1,1));

126 xx(i+1) = amp;

127 trigger = 1;

128 total_bands = total_bands + 1;

129 length_band(total_bands) = length_band(total_bands) + 1;

130 end

131

132 % if same band - keep amplitude same

133 if(x(i) == 2 && x(i+1) == 2);

134 xx(i+1) = amp;

135 length_band(total_bands) = length_band(total_bands) + 1;

136 end

137

138 % if noise

139 if(x(i+1) == 1), xx(i+ 1) = 0; end

140

141 % reset trigger

142 if(x(i) == 2 && x(i+1) == 1); trigger = 0; end

143 end

144

145 % find noise/signal values

146 noise_idx = x == 1;

147 signal_idx = find(x == 2);

148

149 % generate noise dist - gamma with shape, scale and shift ...

(equation 3)

150 noise_dist = gamrnd(alpha_n,beta_n, [1,length(find(x ==1))]) + ...

gamma_n;

151
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152 % only use right number of bands

153 length_band = length_band(1:total_bands);

154

155 for k = 1:total_bands

156

157 % take only the signal indexes

158 xxx = xx(signal_idx);

159

160 alpha1 = a + (b-a).*rand(1,1);

161

162 mean = xxx(idx_xx+1);

163

164 beta1 = mean/alpha1; % beta is depedent on the uniform alpha ...

and uniform (in dB) mean

165

166 signal_dist = gamrnd(alpha1,beta1, [1,length_band(k)]) ;

167

168 % set PSD of the signal index(s) for each band to the values ...

of the rv

169 PSD(signal_idx(idx_xx+1:idx_xx +length_band(k))) = ...

xxx(idx_xx+1:idx_xx +length_band(k)) + signal_dist; % mean ...

+ distribution

170

171 signal_dist_total = [signal_dist_total ...

PSD(signal_idx(idx_xx+1:idx_xx +length_band(k)))];

172

173 % increment to the next band

174 idx_xx = sum(length_band(1:k));

175 end

176

177 % generate the synthetic PSD

178 PSD(noise_idx) = noise_dist;

179
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180 %% markov random sequence

181 function [index] = rando(p)

182

183 u = rand; i = 1;

184 s = p(1);

185

186 while ((u > s) && (i < length(p)))

187 i=i+1; s=s+p(i);

188 end

189

190 index=i;

9.2 Appendices from Chapter 4

Proposition 1. The constraint function in (4.5) is non-convex with respect to s.

Proof: The definition of convexity cannot be applied directly to Jisl(s) as s is complex.

We perform the transformation s = Vs̄, where s̄ ∈ R2M×1 = [Re{s}T , Im{s}T ]T and

V = [IM×M , IM×M ] ∈ CM×2M . With this transformation, we define an equivalent Jisl(s̄) :

R2M → RM to apply the definition, in [121], of convexity. We must show:

f(θs̄1 + (1 + θ)s̄2) ≤ θf(s̄1) + (1− θ)f(s̄2), (9.1)

where 0 ≤ θ < 1, f(s̄) = (s̄TPs̄)(s̄TQs̄), and s̄1, s̄2 are arbitrary signals. The matrices P

and Q are used to simplify notation and are defined as: P = VHEkV and Q = VHET
kV

and k designates a specific lag in the ACS.

We expand using basic algebra (these steps omitted) and again compress the notation

by defining: A = s̄T1 Ps̄1, B = s̄T1 Qs̄1, C = s̄T2 Ps̄2, D = s̄T2 Qs̄2, E = s̄T2 Ps̄2, F = s̄T2 Ps̄1,
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G = s̄T1 Qs̄2, H = s̄T2 Qs̄1. Combining like terms to the left-hand side we can write (9.1) as:

(θ2 + θ + 1)AB+ (9.2)

θ2(AG+ AH + EB + FB)+ (9.3)

θ(1− θ)(AD + EG+ EH + FG+ FH + CB)+ (9.4)

(1− θ)2(ED + FD + CG+ CH)+ (9.5)

+ (−θ2 + 3θ − 3)CD ≤ 0. (9.6)

By simple counter example we let s̄1 = [1, 1]T , s̄2 = [1, 1]T , θ = 0.5, summing the contri-

bution from lags 1,M − 1 gives the LHS = 3.5 
 0. �

Proposition 2 The constraint function in (5.7) is non-convex with respect to s.

Proof: Proof by counter example. Expanding (5.7) we have

Jcm(s) =
M∑
l=1

[
1− sHΣls

]2
, (9.7)

= M − 2‖s‖2
2 +

M∑
l=1

(sHΣls)2, (9.8)

= M − 2 + ‖s‖4
4. (9.9)

Where, for real s and M = 2, (9.7) becomes

Jcm(s) = M − 2
(√

s2
1 + s2

2

)2
+
(
(s4

1 + s4
2)1/4

)4
, (9.10)

= 2− 2
(
s2

1 + s2
2

)
+ s4

1 + s4
2. (9.11)
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Where, W.L.O.G., the first and second derivatives:

∂Jcm

∂s1

= −4s1 + 4s3
1, (9.12)

∂2Jcm

∂s2
1

= −4 + 12s2
1. (9.13)

Thus, for (9.13) to positive, a sufficient condition, s1 >
√

4
12

. Choose s1 and s2 <
√

4
12

, as

a counter example. Therefore, non-convex. �

Proposition 3. PAPR can serve as an upper bound for the constraint threshold εcm.

Proof: From the result in (9.7) is it evident that the dynamic range is M − 2 → M − 1.

Removing the constant, M − 2, to normalize, gives the threshold εcm. Now, we are given

PAPR(s) =
|s|2peak

s2
rms

and εcm(s) = ‖s‖4
4 and need to show PAPR(s) ≥ εcm(s) ∀ s subject to

‖s‖2
2 = 1. To begin, we write

PAPR(s) =
|s|2peak

s2
rms

, (9.14)

=
|s|2peak
1
M
‖s‖2

2

, (9.15)

= M |s|2peak. (9.16)

(9.17)

Thus, we must show

M |s|2peak ≥ ‖s‖4
4, (9.18)

We know the lower-bound on |s|2peak is 1
M

, while the upper-bound on ‖s‖4
4 is 1. It is obvious,

then, 1 ≥ 1. Therefore, we have shown, ∀ s subject to ‖s‖2
2 = 1, that PAPR(s) ≥ εcm(s). �
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9.3 Appendices from Chapter 5

We derive a convex relaxation for the optimization problem in (6.9) by a change of variables

and removal of the implicit rank−1 constraint on the ααH matrix.

We consider first, the objective function:

‖s‖4
4 =

M∑
i=1

|
N∑
l=1

αlvi,l|4

=
M∑
i=1

(
|
N∑
l=1

αlvi,l|2
)2

=
M∑
i=1

(
|αHvHi |2

)2

=
M∑
i=1

(
αHvHi viα

)2

(9.19)

where vi,l is ith element of the lth eigenvector.

Letting A = ααH and V̂i = vHi vi then, we know

tr(V̂iA) = vecH(V̂i)vec(A)

= vecH(A)vec(V̂i)

(9.20)

for ∀ V̂i,A ∈ H. This gives

‖s‖4
4 =

M∑
i=1

(
vecH(V̂i)vec(A)

)2

= vecH(A)
[ M∑
i=1

vec(V̂i)vecH(V̂i)
]
vec(A).

(9.21)

A quadratic objective, known to be convex for positive semi-definite
∑M

i=1 vec(V̂i)vecH(V̂i).

Now the constraint. It is clear ‖s‖2
2 = 1 is proportional to ‖α‖2

2 = 1. So, we can write
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the constraint as
‖α‖2

2 = tr(ααH)

= tr(A)

= tr(IA)

= vecH(Idim(A))vec(A) = 1.

(9.22)

Where in (6.9), the rank of A is implicitly constrained to 1. Without this constraint, we

have an affine equality constraint in A, giving a convex formulation in (9.45). The matrix

A is necessarily positive semi-definite in order for (9.45) to be convex.

9.4 Appendices From Chapter 6

9.4.1 Gradient of ISL objective function

Given the cost function in (6.9) we compute the gradient vector. To facilitate the derivative

operation we write (6.9) as a function of real variables using the following transformations

R{sHEms} =

[
strs

t
i

]Emr −Emi

Emi Emr


sr

si

 (9.23)

and

I{sHEms} =

[
strs

t
i

]Emr Emi

Emi −Emr


si

sr

 (9.24)

where subscripts (·)r and (·)i denote the real and imaginary components [133]. After sim-

plification, this allows us to write the argument in the summation of (6.9) as

|sHEms|2 = (sHEms)(sHEms)H (9.25)

= R{sHEms}2 + I{sHEms}2 (9.26)

= (ytB1y)2 + (ytB2y)2 (9.27)
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where y =

str

sti

, B1 =

Emr −Emi

Emi Emr

 and B2 =

Emr Emi

Emi −Emr

. The gradient

vector is computed with multiple applications of the chain rule. The complete gradient is

then given as

∇yJISL(y) = 2
M−1∑
m=1

(ytB1,my)(B1,m + Bt
1,m)y + (ytB2,my)(B2,m + Bt

2,m)y. (9.28)

9.4.2 Hessian of ISL objective function

The Hessian is computed using the above gradient and applying multiple applications of

the chain rule. We define the Hessian as

HyJISL(y) =
∂2JISL(y)

∂y∂yt
(9.29)

=
∂

∂y

(∂JISL

∂y

)t
(9.30)

=
∂

∂y
(
∇yJISL(y)

)t
. (9.31)

Using the same definitions as above to simplify, we compute the complete Hessian as

HyJISL(y) = 2
M−1∑
m=1

[
ytB1,my(B1,m + Bt

1,m) + (B1,m + Bt
1,m)yyt(B1,m + Bt

1,m) (9.32)

+ ytB2,my(B2,m + Bt
2,m) + (B2,m + Bt

1,m)yyt(B2,m + Bt
2,m)

]
. (9.33)

Of course, the Hessian can be further simplified for symmetric B1,2, allowing for ease of

computation of the determinant.

9.4.3 Convex Relaxation of (6.9)

We derive a formulation for a convex relaxation of (6.9) that guarantees global optimality

in the solution but sacrifices the rank-1 constraint on the ααH = ∆ matrix. The relaxation
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is derived as follows:

JISL =
M−1∑
m=1

(sHEms)(sHEt
ms) (9.34)

=
M−1∑
m=1

(αHVHEmVα)(αHVHEt
mVα) (9.35)

=
M−1∑
m=1

∆VHEmV∆VHEt
mV (9.36)

=
M−1∑
m=1

tr{∆VHEmV∆VHEt
mV} (9.37)

where we know tr(ABCD) = vecH(AH)vec(Dt ⊗ B)vec(C), [134] and therefore can

write

JISL =
M−1∑
m=1

vec(∆)(VtEmV∗ ⊗VEmV)vec(∆) (9.38)

=
M−1∑
m=1

vecH(∆)
[
V∗ ⊗VEm ⊗ EmV∗ ⊗V

]
vec(∆) (9.39)

= vecH(∆)
[
V∗ ⊗V

M−1∑
m=1

(
Em ⊗ Em

)
V∗ ⊗V

]
vec(∆) (9.40)

where the matrix
[
V∗ ⊗ V

∑M−1
m=1

(
Em ⊗ Em

)
V∗ ⊗ V

]
= β is not guaranteed to be

hermitian, therefore we take the Hermitian component 1
2
(βH + β) = Γ for the analysis.

Additionally, it is clear ‖s‖2
2 = 1 is proportional to ‖α‖2

2 = 1. So, we can write the

constraint as

‖α‖2
2 = tr(ααH) (9.41)

= tr(∆) (9.42)

= tr(I∆) (9.43)

= vecH(Idim(∆))vec(∆) = 1 (9.44)
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Where in (6.9), the rank of ∆ is implicitly constrained to 1 and dim(∆) = M . Without this

constraint, we have an affine equality constraint in ∆. The matrix A is necessarily positive

semi-definite.

The relaxed optimization is then defined as

min
∆

vecH(∆)Γ vec(∆) (9.45)

s.t. vecH(Idim(∆))vec(∆) = 1 (9.46)

The solution to (9.45) will, most likely, yield a higher than rank-1 ∆ matrix (hence the

relaxation). Therefore, the recovery procedure to synthesise a waveform using the rank-1

weights vector is to find the best rank-1 eigen-weights (αrelax) solution as defined by having

the lowest ISL waveform. We accomplish by performing an eigen-decomposition on the ∆

matrix and computing an exhaustive search of all possible waveforms with the prescribed

eigen-basis of the interference and noise covariance matrix K.

For M = 24 and for a total of 25 Monte Carlo trials we have computed the lowest ISL

rank-1 solution waveform and display the results in figure 9.1 and 9.2 for the ISL and SINR

as a function of the Eigen-basis dimension, respectively. Notice, as expected, the lower

dimension basis solution improves the sidelobe levels, however, as the basis-dimension

increases, the solution is broad over the ∆ matrix and therefore the lowest ISL rank-1

solution is not as effective. The SINR, however, degrades as if the ISL is being improved.

This analysis motivates use of the non-convex formulation in (6.9) and the performance

models developed.
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Figure 9.1: Output ISL of (9.45) with the lowest ISL rank-1 solution as a function of the
Eigen-basis dimension.
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Figure 9.2: Output SINR of (9.45) with the lowest ISL rank-1 solution as a function of the
Eigen-basis dimension.
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